scholarly journals Surface Modification of Macroporous Matrix for Immobilization of Lipase for Fructose Oleic Ester Synthesis

Author(s):  
Hani Hilmanto ◽  
Chusnul Hidayat ◽  
Pudji Hastuti

<p>The objective of this research was to modify the matrix surfaces to obtain both hydrophobic matrix (HM) and hydrophilic-hydrophobic matrix (HHM) for enzymatic synthesis of fructose oleic ester (FOE). The modification was performed by the attachment of 2-phenylpropionaldehyde (PPA) and PPA followed by polyethyleneimine (PEI) for HM and HHM, respectively. The results from FT-IR analysis showed that the peak of stretching vibration of NH<sub>2</sub> bond decreased and it was followed by an increase of the peak vibration of –C=N– bond at wave number 1667 cm<sup>-1</sup>. The peak of bending vibrations of the C=C bond also increased. It indicated that PPA was successfully attached on matrix. For HHM, an increase in the peak area of NH<sub>2</sub> bond indicated that PEI was also successfully attached on the matrix. The optimum conditions of lipase adsorption were obtained at buffer pH 7 containing 0.5 M NaCl (9.27 mg protein/g matrix) and without NaCl (9.23 mg protein/g matrix) for HM and HHM, respectively. For FOE synthesis, the best immobilized lipase concentration was about 8% and 6% for HM and HHM, respectively. The optimum time of esterification was 24 h and 18 h for HM and HHM, respectively, in which the yields were 75.96% and 85.29%, respectively. The immobilized lipase could be used up to 3 cycles of esterification reaction. Copyright © 2016 BCREC GROUP. All rights reserved</p><p><em>Received: 21<sup>st</sup> December 2015; Revised: 23<sup>rd</sup> February 2016; Accepted: 14<sup>th</sup> April 2016</em></p><p><strong>How to Cite</strong>: Hilmanto, H., Hidayat, C., Hastuti, P. (2016). Surface Modification of Macroporous Matrix for Immobilization of Lipase for Fructose Oleic Ester Synthesis. <em>Bulletin of Chemical Reaction Engineering &amp; Catalysis</em>, 11 (3): 339-345 (doi:10.9767/bcrec.11.3.573.339-345)</p><p><strong>Permalink/DOI:</strong> <a href="http://doi.org/10.9767/bcrec.11.3.573.339-345">http://doi.org/10.9767/bcrec.11.3.573.339-345</a></p>

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Nikola Milašinović ◽  
Sonja Jakovetić ◽  
Zorica Knežević-Jugović ◽  
Nedeljko Milosavljević ◽  
Marija Lučić ◽  
...  

This study reports the synthesis of polymeric matrices based onN-isopropylacrylamide and itaconic acid and its application for immobilization of lipase fromCandida rugosa. The lipase was immobilized by entrapment method. Free and immobilized lipase activities, pH and temperature optima, and storage stability were investigated. The optimum temperature for free and entrapped lipase was found to be 40 and 45°C, while the optimum pH was observed at pH 7 and 8, respectively. Both hydrolytic activity in an aqueous medium and esterolytic activity in an organic medium have been evaluated. Maximum reaction rate (Vmax) and Michaelis-Menten constants (Km) were also determined for immobilized lipase. Storage stability of lipase was increased as a result of immobilization process. Furthermore, the operational stability and reusability of the immobilized lipase in esterification reaction have been studied, and it was observed that after 10 cycles, the residual activity for entrapped lipase was as high as 50%, implying that the developed hydrogel and immobilized system could provide a promising solution for the flavor ester synthesis at the industrial scale.


2018 ◽  
Vol 2 (1) ◽  
pp. 23
Author(s):  
Sigit Hadiantoro ◽  
Dwina Moentamaria ◽  
Muchamad Syarwani

Kinerja enzim immobilisasi dapat ditingkatkan dengan penambahan co immobilizer, hal ini dilakukan agar ikatan kovalen antara enzim dan matriks lebih kuat dan mempermudah reaksi dari gugus fungsional yang ada pada matriks sehingga tidak diperlukan penambahan bahan kimia sebagai pembawa. Pada penelitian ini digunakan matriks polyurethane foam (PUF) dengan penambahan co immobilizer yang terdiri dari gelatin, lesitin, MgCl2, dan polyethyleh glycol (PEG) 6000. Penelitian ini difokuskan untuk melihat efektivitas co immobilized-lipase pada reaksi hidrolisis-esterifikasi. PUF direndam dalam larutan co immobilizer dengan perbandingan 1:15; 1:20 dan 1:25 (b/b) selama satu jam setelah itu dipanaskan dalam oven selama satu jam pada suhu 30°C. Selanjutnya,  matriks PUF direndam dalam lipase selama 24 jam dan dikeringkan dalam oven pada suhu 30°C selama 24 jam sehingga terbentuk matriks lipase terko-immobilisasi pada PUF dengan yang digunakan untuk reaksi hidrolisis-esterifikasi sebagai biokatalis. Pada reaksi hidrolisis digunakan 10 gram minyak yang diemulsikan dalam air dengan variabel rasio minyak-air 1:0,6; 1:1; 1:3 dan 1:5 (b/b) dan waktu reaksi 5, 10, 15 dan 20 jam. Kadar FFA minyak kelapa awal sebesar 0,21%. Produk terbaik reaksi hidrolisis adalah asam lemak bebas dengan kenaikan kadar FFA menjadi 1,18% pada kondisi perbandingan minyak/air 1:5 (b/b). Reaksi esterfikasi dilakukan dengan cara mereaksikan asam lemak hasil terbaik hidrolisis dengan sitronelol dan co immobilized-lipase sebagai biokatalis. Reaksi ini dilakukan dengan variabel asam lemak: sitronelol 1:0,8 ; 1:1 dan 1:3 (b/b) serta waktu reaksi: 5, 10, 15 dan 20 jam. Produk yang dihasilkan adalah perisa alami sebagai ester. Analisis kadar sitronelol awal dan akhir reaksi esterifikasi dilakukan dengan menggunakan GC-FID. Hasil terbaik dari penelitian ini yaitu konversi sebesar 92,88% diperoleh pada ratio massa asam lemak/sitronelol 1:3.Immobilized enzyme performance can be enhanced by the addition of co-immobilizer, this is done so that the covalent bond between the enzyme and the matrix can become stronger and also to ease the reaction of the functional groups present in the matrix so that no addition of chemical as carrier is required. This study used Polyurethane Foam (PUF) as matrix with the addition of co-immobilizer which contain gelatin, lecithin, MgCl2, and PEG 6000. This study focused on looking at the effect of co-immobilized lipase on hydrolysis-esterification reactions. PUF is immersed in an co-immobilizer solution of 1:15; 1:20 and 1:25 ratio (w/w) for one hour and heated for another hour at 30°C. After that, PUF is immersed in the lipase for 24 hours, after which is heated at 30°C also for 24 hours. This research was conducted in 2 stages of reaction, which is hydrolysis then continued by esterification. In the hydrolysis reaction, we used variables such as oil-water ratio for 1:0.6; 1:1; 1:3 and 1:5 (w/w); the reaction time 5, 10, 15 and 20 hours; and also PUF:co-immobilized ratio in 1:15; 1:20 and 1:25 (w/w). The best fatty acid obtained from hydrolysis results in oil-water ratio of 1:5 (w/w), with FFA 1.18%.  Next is esterification reaction which is done by reacting  fatty acid from hydrolyzed coconut oil with citronellol, with the addition of immobilized lipase (as a biocatalyst). This reaction was carried out with variables like mass ratio of fatty acids-citronellol 1:0.8; 1:1 and 1:3 and reaction time: 5, 10, 15 and 20 hours. The resulting product is the flavor enhancer as ester. The analysis of the percentage of initial and final citronellol on the end of esterification reaction were performed using GC-FID. The best results of this study, conversion percentage respectively 92.88% obtained at mass ratio of fatty acid-citronellol 1:3.


2011 ◽  
Vol 699 ◽  
pp. 265-271 ◽  
Author(s):  
A. Xavier ◽  
R Sathya ◽  
D. Usha ◽  
P.S. Harikrishnan

A series of metal complexes have been synthesized by the reaction of Schiff base with metal (II) salt solution. The complexes were characterized by UV and FT- IR studies. The study reveals that the geometry of the complexes were octahedral. The electronic spectra of these complexes show a strong absorption band in 550 - 580nm region. This confirms the coordination of ligand with metal. The FT-IR shows a very strong band at 1616cm-1assigned to C=N stretching vibration. It is shifted to lower wave number because of the complex formation, suggesting that coordination of the Schiff base groups through N- atoms with the metal ion. The band at 3496 cm-1is due to aromatic N-H stretching, It is noted that a broad band of the asymmetric and symmetric O-H stretching mode around the region 3400 cm-1presumably due to H-O-H bending vibrations are not observed in the spectrum of complexes, which are indicating of the absence of the water molecule.


1983 ◽  
Vol 48 (2) ◽  
pp. 586-595 ◽  
Author(s):  
Alexander Perjéssy ◽  
Pavol Hrnčiar ◽  
Ján Šraga

The wave numbers of the fundamental C=O and C=C stretching vibrations, as well as that of the first overtone of C=O stretching vibration of 2-(3-, and 4-substituted phenylmethylene)-1,3-cycloheptanediones and 1,3-cycloheptanedione were measured in tetrachloromethane and chloroform. The spectral data were correlated with σ+ constants of substituents attached to phenyl group and with wave number shifts of the C=O stretching vibration of substituted acetophenones. The slope of the linear dependence ν vs ν+ of the C=C stretching vibration of the ethylenic group was found to be more than two times higher than that of the analogous correlation of the C=O stretching vibration. Positive values of anharmonicity for asymmetric C=O stretching vibration can be considered as an evidence of the vibrational coupling in a cyclic 1,3-dicarbonyl system similarly, as with derivatives of 1,3-indanedione. The relationship between the wave numbers of the symmetric and asymmetric C=O stretching vibrations indicates that the effect of structure upon both vibrations is symmetric. The vibrational coupling in 1,3-cycloheptanediones and the application of Seth-Paul-Van-Duyse equation is discussed in relation to analogous results obtained for other cyclic 1,3-dicarbonyl compounds.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Madan Lal Verma ◽  
Wamik Azmi ◽  
Shamsher Singh Kanwar

Selective production of fragrance fatty acid ester from isopropanol and acetic acid has been achieved using silica-immobilized lipase of Bacillus cereus MTCC 8372. A purified thermoalkalophilic extracellular lipase was immobilized by adsorption onto the silica. The effects of various parameters like molar ratio of substrates (isopropanol and acetic acid; 25 to 100 mM), concentration of biocatalyst (25–125 mg/mL), reaction time, reaction temperature, organic solvents, molecular sieves, and initial water activity were studied for optimal ester synthesis. Under optimized conditions, 66.0 mM of isopropyl acetate was produced when isopropanol and acetic acid were used at 100 mM: 75 mM in 9 h at 55°C in n-heptane under continuous shaking (160 rpm) using bound lipase (25 mg). Addition of molecular sieves (3 Å  × 1.5 mm) resulted in a marked increase in ester synthesis (73.0 mM). Ester synthesis was enhanced by water activity associated with pre-equilibrated saturated salt solution of LiCl. The immobilized lipase retained more than 50% of its activity after the 6th cycle of reuse.


2021 ◽  
Author(s):  
Mariève D Boulanger ◽  
Mohamed A Elkhodiry ◽  
Omar Bashth ◽  
Gaétan Laroche ◽  
Corinne A Hoesli

Maximizing the re-endothelialization of vascular implants such as prostheses or stents has the potential to significantly improve their long-term performance. Endothelial progenitor cell capture stents with surface-immobilized antibodies show significantly improved endothelialization in the clinic. However, most current antibody-based stent surface modification strategies rely on antibody adsorption or direct conjugation via amino or carboxyl groups which leads to poor control over antibody surface concentration and/or molecular orientation, and ultimately bioavailability for cell capture. Here, we assess the utility of a bioaffinity-based surface modification strategy consisting of a surface-conjugated cysteine-tagged protein G molecules that immobilize Immunoglobulin G (IgG) antibodies via the Fc domain to capture circulating endothelial colony-forming cells (ECFCs). The cysteine-tagged protein G was grafted onto aminated substrates at different concentrations as detected by an enzyme-linked immunosorbent assay and fluorescence imaging. Different IgG antibodies were successfully immobilized on the protein G-modified surfaces and higher antibody surface concentrations were achieved compared to passive adsorption methods. Surfaces with immobilized antibodies targeting endothelial surface proteins, such as CD144, significantly enhanced the capture of circulating ECFCs in vitro compared to surfaces with non-endothelial specific antibodies such as anti-CD14. This work presents a potential avenue for enhancing the clinical performance of vascular implants by using covalent grafting of protein G to immobilize IgG antibodies more effectively.


2010 ◽  
Vol 9 (3) ◽  
pp. 474-478
Author(s):  
Khairan Khairan ◽  
Umar A. Jenie ◽  
Retno S. Sudibyo

Semisynthesis of D6,7-Anhydroerythromycin-A was done by biomodification technique by addition of 0.2% INH into a culture fermentation of Saccharopolyspora erythraea ATCC 11635 in medium Hutchinson. The aim of this research is to studies of fragmentation pattern from new matabolite of D6,7-Anhydroerythromycin-A by Liquid Chromatography-Mass Spectroscopy (LC-MS) and the ionization of mass spectroscopy is use by ESI (Electrospray Ionization) pattern. The FT-IR spectrometric analyzes showed a stretching vibration of C=C conjugated group at wave number 1602.7 cm-1. This C=C conjugated vibration indicated the existence of double bond between C6 and C7 (D6,7), this confirmed that isolate contained D6,7-Anhydroerythromycin-A (the possibility of D6,7 was positive). For complementation, a LC-MS (Liquid Chromatography-Mass Spectroscopy) analyzes using ESI-MS (Electrospray Ionization-Mass Spectroscopy) ionization pattern was conducted to the isolate which resulted Quassimolecular ions [M+H]+ of D7,8- and D6,7-Anhydroerythromycin-A. LC-MS spectrogram of the isolate, which gave two peaks of m/z 732.2460 and m/z 716.2522, confirmed that the m/z 732.2460 possibly was D7,8-Anhydroerythromycin-A, while the m/z 716.2502 and m/z 715.2522 possibly were D6,7-Anhydroerythromycin-A.   Keywords: isoniazid, enoyl reduction, D6,7-Anhidroeritromisin-A, fragmentation, LC-MS.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1726 ◽  
Author(s):  
Yapeng Mao ◽  
Qiuying Li ◽  
Chifei Wu

Surface modification fundamentally influences the morphology of polyethylene terephthalate (PET) fibers produced from abandoned polyester textiles and improve the compatibility between the fiber and the matrix. In this study, PET fiber was modified through solution dip-coating using a novel synthesized tetraethyl orthosilicate (TEOS)/KH550/ polypropylene (PP)-g-MAH (MPP) hybrid (TMPP). The PET fiber with TMPP modifier was exposed to the air. SiO2 particles would be hydrolyzed from TEOS and become the crystalline cores of MPP. Then, the membrane formed by MPP, SiO2 and KH550 covered the surface of the PET fiber. TMPP powder was investigated and characterized by fourier transform infrared spectroscopy, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). TMPP-modified PET fiber was researched by X-ray diffraction and SEM. Furthermore, tensile strength of single fiber was also tested. PET fiber/PP composites were studied through dynamic mechanical analysis and SEM. Flexural properties of composites were also measured. The interfacial properties of PET fiber and PP matrix were indirectly represented by contact angle analysis. Results showed that the addition of TEOS is helpful in homogenizing the distribution of PP-g-MAH. Furthermore, TMPP generates an organic-inorganic ‘armor’ structure on PET fiber, which can make up for the damage areas on the surface of PET fiber and strengthen each single-fiber by 14.4%. Besides, bending strength and modulus of TMPP-modified PET fiber-reinforced PP composite respectively, increase by 10 and 800 MPa. The compatibility between PET fiber and PP was also confirmed to be increased by TMPP. Predictably, this work supplied a new way for PET fiber modification and exploited its potential applications in composites.


RSC Advances ◽  
2016 ◽  
Vol 6 (9) ◽  
pp. 7339-7347 ◽  
Author(s):  
Shilin Liu ◽  
Ya Zhu ◽  
Wei Li ◽  
Yan Li ◽  
Bin Li

Surface modification of the magnetic cellulose particles has been conducted by using AEAPS, the modified magnetic cellulose particles were then used for the immobilization of lipase for catalysis reaction.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Ashok Kumar ◽  
Shamsher Singh Kanwar

Immobilization of lipases has proved to be a useful technique for improving an enzyme's activity in organic solvents. In the present study, the performance of a silica-immobilized lipase was evaluated for the synthesis of isopropyl ferulate in DMSO. The biocatalyst was cross-linked onto the matrix with 1% glutaraldehyde. The effects of various parameters, molar ratio of ferulic acid to isopropyl alcohol (25 mM : 100 mM), concentration of biocatalyst (2.5–20 mg/mL), molecular sieves (25–250 mg/mL), and various salt ions, were studied consecutively as a function of percent esterification. Immobilized lipase at 25 mg/mL showed maximum esterification (~84%) of ferulic acid and isopropanol at a molar ratio of 25 mM : 100 mM, respectively, in DMSO at 45°C in 3 h under shaking (150 rpm). To overcome the inhibitory effect of water (a byproduct) if any, in the reaction mixture, molecular sieves (3 Å × 1.5 mm; 100 mg/mL) were added to the reaction mixture to promote the forward reaction. Salt ions like Ca2+, Cd2+, and Fe2+ enhanced the activity of immobilized biocatalyst while a few ions like Co2+, Zn2+, Mg2+, Mn2+, Al3+, and Na+ had mild inhibitory effect. Approximately, one third of total decrease in the esterification efficacy was observed after the 5th repetitive cycle of esterification.


Sign in / Sign up

Export Citation Format

Share Document