scholarly journals Effects of Cellulase Enzyme on Nutritive Value, in vitro Digestion Characteristics and Microbial Biomass Production of Wheat Straw

Author(s):  
Hatice KALKAN ◽  
İsmail FİLYA
2007 ◽  
Vol 2007 ◽  
pp. 197-197
Author(s):  
Hassan Fazaeli ◽  
Seyed Ahmad Mirhadi

Biological de-lignification of straw by white-rot fungi seems a promising way of improving its nutritive value. The bio-conversion of lignocellulosic materials is circumscribed to the group of white-rot fungi, of which some species of Pleurotus are capable of producing upgraded spent-straws as ruminant feed (Fazaeli et al., 2004). Treating of cereal straw with white-rot fungi as animal feed was studied by several workers (Gupta et al., 1993; Zadrazil, 1997). However, most of the trials were conducted at in vitro stage and used cell wall degradation and in vitro digestibility as an index to evaluate the biological treatments. This experiment was conducted to study the effect of fungal treatment on the voluntary intake, in vivo digestibility and nutritive value index of wheat straw obtained from short-term and long-term solid state fermentation (SSF).


2005 ◽  
Vol 2005 ◽  
pp. 137-137
Author(s):  
E. M. Hodgson ◽  
M. D. Hale ◽  
H. M. Omed

Straw constitutes a vast, valuable, and under utilised agricultural by-product, which has a great potential for utilisation as an animal feedstuff. However, due to the way in which it is constructed, the digestible sugars, cellulose and hemicelluloses, are tightly chemically bound by heavily lignified cell walls which provide the wheat plant stem with its strength and structure, but in doing so greatly inhibit the digestibility and nutritive value of the material to ruminant animals. Therefore, the utilisation of this resource as an animal feed can only be realised effectively, if the nutritional and digestibility values of the material can be improved by the innovation and successful application of an effective treatment method, be that physical, chemical or biological. Previously devised methods of upgrading the digestibility and nutritive value of forages, with the possible exception of urea treatment, have proven either insufficient, environmentally unsound, or economically infeasible to those concerned, particularly those in developing world. Therefore, there is a distinct need to develop techniques which can avoid these pitfalls and still yield the desired results in the context of animal nutrition. Previous research has indicated that members of the genus Pleurotus white rot fungi, have great potential for application in the biological upgrading of wheat straw. Therefore, the objective of this work was to investigate biological techniques, using 3 strains of Pleurotus fungi which may have the potential to be utilised in the biological upgrading of wheat straw.


2017 ◽  
Vol 57 (8) ◽  
pp. 1603 ◽  
Author(s):  
S. Yammuen-art ◽  
P. Somrak ◽  
C. Phatsara

The present study evaluated the chemical composition and in vitro ruminal digestibility of napier Pakchong 1 silage combined with maize cob and husk in different ratios. The napier Pakchong 1 grass was harvested at 45 days of maturity. The napier Pakchong 1 grass was ensiled with maize cob and husk at ratios of 1:5, 1:10 and 1:15. Three rumen fistulated Thai native cattle (White Lamphun cattle) with an average weight of 154 ± 4.7 kg were used to determine ruminal digestibility by in vitro gas-production technique. Gas production was recorded after incubating for 2, 4, 8, 12, 24, 48, 72 and 96 h. The microbial biomass yield was determined after incubating for 24 h. DM, NDF and ADF of maize cob and husk mixed with napier Pakchong 1 silage declined by increasing the proportion of napier Pakchong 1 grass, while gas production after 4–10 h of incubating maize cob and husk mixed with napier Pakchong 1 grass increased by increasing the proportion of napier Pakchong 1 grass. The metabolisable energy, organic matter digestibility and microbial biomass yield did not differ among the different ratios. The results of the study suggested a recommended ratio of maize cob and husk to napier Pakchong 1 grass of 1:10. The ensiling fermentation increased the proportion of protein in the roughage, which lead to increased in vitro gas production of roughage.


2019 ◽  
Vol 59 (3) ◽  
pp. 600
Author(s):  
S. Yammuen-art ◽  
P. Somrak ◽  
C. Phatsara

The present study evaluated the chemical composition and in vitro ruminal digestibility of napier Pakchong 1 silage combined with maize cob and husk in different ratios. The napier Pakchong 1 grass was harvested at 45 days of maturity. The napier Pakchong 1 grass was ensiled with maize cob and husk at ratios of 1:5, 1:10 and 1:15. Three rumen fistulated Thai native cattle (White Lamphun cattle) with an average weight of 154 ± 4.7 kg were used to determine ruminal digestibility by in vitro gas-production technique. Gas production was recorded after incubating for 2, 4, 8, 12, 24, 48, 72 and 96 h. The microbial biomass yield was determined after incubating for 24 h. DM, NDF and ADF of maize cob and husk mixed with napier Pakchong 1 silage declined by increasing the proportion of napier Pakchong 1 grass, while gas production after 4–10 h of incubating maize cob and husk mixed with napier Pakchong 1 grass increased by increasing the proportion of napier Pakchong 1 grass. The metabolisable energy, organic matter digestibility and microbial biomass yield did not differ among the different ratios. The results of the study suggested a recommended ratio of maize cob and husk to napier Pakchong 1 grass of 1:10. The ensiling fermentation increased the proportion of protein in the roughage, which lead to increased in vitro gas production of roughage.


2003 ◽  
Vol 2003 ◽  
pp. 166-166
Author(s):  
H. Fazaeli ◽  
A. Azizi ◽  
Z. A. M. Jelan ◽  
S. A. Mirhadi

Fungal treatment has been recently considered as a promising method for improving the nutritive value of straw (Zadrazil et al., 1997). Several studies have been conducted to identify species of white-rot fungi for assessing their ability to improve the nutritive value of straw (Yamakamwa et al., 1992). Since there are many species of fungi in nature, there is an interest in characterising of some species. The objectives of this experiment were to study the effect of five Pleurotus fungi on the chemical composition, in vitro digestibility and in sacco degradability of wheat straw and evaluate their effect in upgrading the nutritive value of lignicellulosic materials.


2021 ◽  
Author(s):  
María-Teresa Pino ◽  
Cristina Vergara

The potato is the fourth most important crop in the world in terms of human food, after maize, wheat and rice (FAOSTAT, 2019). The cultivated potato is a vital food-security crop considering its worldwide growth, from latitudes 65° Lat N to 53° Lat S, high yield, and great nutritive value. The potato is a good source of dietary energy and micronutrients, and its protein content is high in comparison with other roots and tubers. The cultivated potato is also a concentrated source of vitamin C and some minerals such as potassium and magnesium. Tuber flesh color generally ranges from white to dark yellow in cultivated potato; however, the high potato diversity shows tuber flesh color varies from white to dark purple. Red and purple-flesh potatoes are an interesting alternative for consumers due to phenolic compounds and antioxidant capacity. The goal of this publication is to show the advances in red and purple flesh potato, in terms of anthocyanin profile, color extraction and stability in simulated in vitro digestion.


2018 ◽  
Vol 39 (6) ◽  
pp. 2807
Author(s):  
Huan Liang ◽  
Jinghua Zhang ◽  
Guibo Liu ◽  
Yuan Li ◽  
Yongliang You ◽  
...  

Sorghum-sudangrass hybrid silage has poor fermentation characteristics owing to a high moisture content. Accordingly, a 3 × 4+1 factorial design was applied to investigate the effects of adding different types and amounts of hay (corn stalk, wheat straw, and alfalfa hay at 12.5 kg t-1, 25 kg t-1, 37.5 kg t-1, and 50 kg t-1) on the nutritive value, fermentation quality, 72 h dry matter digestibility, and gas dynamics in vitro to simulate the rumen fermentation of sorghum-sudangrass hybrid silage. Separated silage of sorghum-sudangrass hybrids had a high butyric acid content and a FLIEG’s scores evaluation ranking of only “Fair.” The addition of hay significantly improved the fermentation quality of mixed silage. With respect to hay type, adding wheat straw had the best fermentation quality, alfalfa hay had the best nutritive value, in vitro dry matter digestibility (IVDMD) (662.41 g kg-1), constant fractional rate (C) (0.28 mL h-1), and the average gas production rate (AGPR) (32.70 mL h-1) content. There were no differences in the cumulative gas production at 72 h (GP72h), asymptotic gas production generated at a constant fractional rate (A), and lag time before gas production commenced (lag) among the three hay types. With respect to quantity, 25 kg t-1 hay had the best fermentation quality, 50 kg t-1 hay had the best nutritive value and highest IVDMD content (662.81 g kg-1), 37.5 kg t-1 hay had the highest C (0.28 mL h-1) and AGPR (31.48 mL h-1) contents, 25 kg t-1 hay had the highest Half time (2.20 h), and there were no significant differences in GP72h, A, and lag among the four amounts. Considering both nutritive value and fermentation quality, the best mixed silage mode was 37.5 kg t-1 wheat straw.


Sign in / Sign up

Export Citation Format

Share Document