scholarly journals Improving the Minimum Design Velocity of Sewage Pipes

2021 ◽  
Vol 21 (5) ◽  
pp. 263-270
Author(s):  
Yang Ho Song ◽  
Yun Hee Lee ◽  
Jung Ho Lee

The minimum design velocity for sewage pipes is set based on the planned quantity; however, deriving a reasonable design with only a single standard is limited. Thus, it is necessary to review whether consistent standards, such as the current minimum flow velocity, can efficiently transport the particles flowing in pipes. Improving the design that can determine the minimum design velocity rate and slope according to the concentration, specific gravity, particle size, and characteristics of the pipe material of the sediment flowing into the sewer system is necessary. In this study, the minimum design velocity for each particle size was examined based on the results of the simulation of fluid-solid multiphase flow required for the review process of hydraulic properties inside the pipe. The minimum design velocity standards for domestic and international sewage systems were investigated and compared, and a minimum design flow rate prediction equation was proposed considering the sedimentation. The equation includes the relationship between the particle size and pipe diameter and can be easily estimated.

2010 ◽  
Vol 156-157 ◽  
pp. 1702-1707
Author(s):  
Xiang Wen Cheng ◽  
Jinchao Liu ◽  
Qi Zhi Ding ◽  
Li Ming Song ◽  
Zhan Lin Wang

How to predict the relationship among particle size and among product size, to establish the relationship between the granularity and working parameters in the process of grinding and to determine the optimum operating parameters. With proposing BS squeeze crush model by L. Bass and the idea of roll surface division as the material uneven extrusion force are adopted. Based on field experiments the experimental data is analyzed, the select function and the breakage functions are fitted with MATLAB software, and obtaining their model. The comminution model is determined by the roller division. We obtain the model parameter through the experimental data. Through model analysis shows: the relationship between particle breakage and energy absorption, namely the smaller size of the same power, the lower broken; the breakage diminishes with the decrease of particle size ratio and it will be tending to a small constant when the smaller particle size ratio. The breakage functions rapidly decrease within ratio of between 0.2-0.7. This shows: the energy consumption will rapidly increase when the particle size of less than 0.2 in broken; the selection diminish with the decrease of particle size. Pressure (8-9MPa) should be the most appropriate value.


2019 ◽  
Vol 81 (3) ◽  
Author(s):  
N. Masdiana ◽  
M. Rashid ◽  
S. Hajar ◽  
M. R. Ammar

TrikotAC filter aids is a combination of a pre-coating material PreKot™ with two adsorbents; activated carbon and lime and their characteristics were investigated in this study. TrikotAC was formulated into three different weight ratios of 5:1:94, 10:1:89 and 10:5:85, respectively. The relationship between adsorption properties and characteristics of the formulated materials particle size distribution, particle density, bulk density, and BET surface area were investigated. The results showed that the adsorption capacity for TrikotAC 10:5:85 (11.88 mg/g) was higher than for the other formulated filter aids samples, and the formulated filter aids material TrikotAC showed promising characteristic as a filter aids and adsorbent for organic compound in fabric filtration system.


2019 ◽  
Vol 118 ◽  
pp. 04009
Author(s):  
Yuan Li ◽  
Jie Liu ◽  
Yibiao Yu ◽  
Hao Zhu ◽  
Zheng Shen ◽  
...  

A more detailed occurrence features of organic matters in the printing and dyeing wastewater, based on its particle size distribution (PSD) and along with a wastewater treatment process, was conducted to provide a support for advanced treatment. Results suggested that, (1) In the dyeing wastewater, the occurrence characteristic of COD was: soluble>supra colloidal>colloidal>settleable; However, for protein, the supra colloidal was dominant, followed by the soluble. The feature of the polysaccharide was consistent with COD’s. In the wastewater, 29.66% of COD could be attributed to proteins and 3.45% of the COD could be attributed to polysaccharides. (2) The relationship among the forms of COD in the primary sedimentation tank, aerobic tank, secondary sedimentation tank, and reverse osmosis-treated concentrated effluent was consistent, that was: soluble>colloidal>supra colloidal>settleable. (3) In the primary sedimentation tank, the settleable COD was almost completely removed; In the aerobic tank, the residual super colloidal COD was not much; After MBR-RO treatment, the COD in the reverse osmosis concentrated water was almost dissolved and only a little presented in other forms.


2002 ◽  
Vol 23 (2) ◽  
pp. 177-183 ◽  
Author(s):  
Laurence D. Fechter ◽  
David L. Johnson ◽  
Robert A. Lynch

2021 ◽  
pp. 105497
Author(s):  
Guannan Yang ◽  
Wei Lin ◽  
Haiqi Lai ◽  
Jin Tong ◽  
Junjun Lei ◽  
...  

2021 ◽  
Vol 1 (2) ◽  
pp. 041-048
Author(s):  
Benson Chinweuba Udeh

This study is on the production of quicklime from Ashaka limestone through calcination process. Effects of temperature, particle size and time on quicklime yield were determined. The experiment was carried out at temperatures of 800, 900, 1000, 1100 and 1200 0C, particle sizes of 80mm, 90mm, 100mm, 300mm and 425mm and times of 0.5hr, 1hr, 2hrs, 3hrs and 4hrs. Analyses of the results showed that quicklime was successfully produced from Ashaka limestone through the calcination process. Quadratic model adequately described the relationship between quicklime yield and calcination factors of temperature, particle size and time. Recorded model F-value of 134.35 implies that the model is significant. The predicted R² of 0.9597 is in reasonable agreement with the adjusted R² of 0.9844; the difference is less than the critical value of 0.2. Optimum yield of 73.48% was obtained at optima operating conditions; temperature of 1000 0C, particle size of 90 µm and time of 3 hrs.


Author(s):  
Shinobu Kawaguchi ◽  
Naoto Hagiwara ◽  
Mitsuru Ohata ◽  
Masao Toyoda

A method of predicting the leak/rupture criteria for API 5L X80 and X100 linepipes was evaluated, based on the results of hydrostatic full-scale tests for X60, X65, X80 and X100 linepipes with an axially through-wall (TW) notch. The TW notch test results clarified the leak/rupture criteria, that is, the relationship between the initial notch lengths and the maximum hoop stresses during the TW notch tests. The obtained leak/rupture criteria were then compared to the prediction of the Charpy V-notch (CVN) absorbed energy-based equation, which has been proposed by Kiefner et al. The comparison revealed that the CVN-based equation was not applicable to the pipes having a CVN energy (Cv) greater than 130 J and flow stress greater than X65. In order to predict the leak/rupture criteria for these linepipes, the static absorbed energy for ductile cracking, (Cvs)i, was introduced as representing the fracture toughness of a pipe material. The (Cvs)i value was determined from the microscopic observation of the cut and buffed Charpy V-notch specimens after static 3-point bending tests. The CVN energy in the original CVN-based equation was replaced by an equivalent CVN energy, (Cv)eq’ which was defined as follows: (Cv)eq = 4.5 (Cvs)i. The leak/rupture criteria for the X80 and X100 linepipes with higher CVN energies were reasonably predicted by the modified equation using the (Cvs)i value.


Sign in / Sign up

Export Citation Format

Share Document