scholarly journals Photocatalytic Degradation of Rhodamine B and Malachite Green by Cobalt Sulfide Nanoparticles

2022 ◽  
Vol 34 (2) ◽  
pp. 331-341
Author(s):  
Gunjan Chauhan ◽  
Manjeet Sharma

Present study reports the simple and cost effective thermolytic method for the synthesis of cobalt sulphide nanoparticles (CoS NPs). The PXRD spectrum of cobalt sulphide (CdS) nanoparticles exhibited four peaks indexed to (100), (101), (102) and (110) crystal planes. The average particle size observed from DLS and PXRD was in the range 4.81-12.20 nm. A blue shift in band gap was observed from UV-visible spectra. The FESEM and TEM studies revealed that cobalt sulfide nanoparticles are of cubic and rectangle shapes. FTIR spectra of hexadecylamine (HDA) capped CoS NPs exhibited ν(N-H) absorption around 3350-3240 cm–1. The stretching frequency due to ν(Co-S) appeared in the region 334-332 cm–1. Proton NMR (1H) spectra of CoS NPs showed signals at nearly same positions as in case of capping agent, suggesting its capping nature. ESI-MS analyses of cobalt sulphide nanoparticles displayed peak at m/z = 124.93 corresponding to the [CoS2]+ ion. Thermogravimetric curves showed single step decomposition corresponding to 84.28% weight loss and 15.72% as final residue due to cobalt oxide. The degradation rate of rhodamine B and malachite green dyes after irradiating with sunlight showed 92-94% degradation while irradiated with UV-light of 4.8 eV show much slower degradation rate.

2016 ◽  
Vol 15 (05n06) ◽  
pp. 1660002 ◽  
Author(s):  
V. Kavitha ◽  
P. S. Ramesh ◽  
D. Geetha

Copper doped Titanium dioxide TiO2 nanoparticles were synthesized by sol–gel method using titanium tetraisopropoxide and copper sulfate as precursors. The synthesized nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), UV-Visible spectroscopy (UV-Vis), Photoluminesce spectroscopy (PL) and atomic force microscopy (AFM). XRD analysis confirms the formation of anatase titanium dioxide and average particle size was 35[Formula: see text]nm. Cu– TiO2 exhibits a shift in the absorption edge toward visible spectrum. The rate of recombination and transfer behavior of the photoexcited electron–hole pairs in the semiconductors was recorded by photoluminescence. From SEM spherical shaped nanoparticles was observed. Comparing with pure TiO2 nanoparticles, Cu doped TiO2 photocatalyst exhibited enhanced photocatalytic activity under natural sunlight irradiation in the decomposition of rhodamine B aqueous solution. The maximum 97% of degradation efficiency of Rhodamine B was observed at 0.6% Cu–TiO2 within 180[Formula: see text]min. The photocatalytic efficiency of Rhodamine B of Cu doped TiO2 nanoparticle was higher than the pure TiO2, which could be attributed to the small crystallinity intense light absorption in Sunlight and narrow bandgap energy of Copper.


2018 ◽  
Vol 762 ◽  
pp. 408-412
Author(s):  
Raivis Eglītis ◽  
Gundars Mežinskis

In this work two different hydrosols were used to impregnate a commercially available cotton fabric with anatase nanoparticles to give it photocatalytic activity. To increase the activity, different pre-treatment methods were applied. The nanoparticle size was determined using dynamic light scattering and x-ray diffraction and the fabrics were examined using scanning electron microscopy. Photocatalytic activity was measured using the degradation of methyl-orange while irradiating the samples with UV light. The synthesis method allowed to produce anatase with an average particle size of 32 to 37 nm depending on the synthesis method used.


2005 ◽  
Vol 17 (06) ◽  
pp. 293-299 ◽  
Author(s):  
MING-YIH LEE ◽  
HUNG-CHIA LIN ◽  
HUNG-WEI CHIANG ◽  
WEI-XUN LEE ◽  
XIAN-DONG HUANG

The aim of this study is to develop a non-continuous droplet manipulation technology in contrast to conventional continuous flow micro-fluidic systems. The droplets were manipulated based on the proposed opto-wetting effect. In addition, an experimental ultraviolet (UV) light actuated droplet manipulation system was developed for verifying the opto-wetting droplet manipulation. The proposed opto-wetting effect was achieved by utilizing ultraviolet to activate oxidation-reduction mechanism of nano-TiO2 photo catalyst coated base material. The water-affinity of the base material will changed due to the decreased free-energy of the material surface. Therefore, the contact angle between the liquid droplet and base material will also be changed which facilitates droplet manipulability. The main components of the proposed ultraviolet (UV) light actuated droplet manipulation system include ultraviolet masking device, moving platform and main frame structure. System software and user interface were designed by using Microsoft Visual Basic 6.0 toolkit. Upon completion of the proposed system, experiments were carried out to verify system functionalities. Follow by the controlled variable optimization using Taguchi method and liquid droplet manipulation experiments. The experiment results indicate that by exposure to 6.8mW UV light, the surface tension and hydrophilic property of nano-TiO2 (anatase type, 3.5% concentration, PH 1.5, and with average particle size of 69 nm) coated base material will changed. The change of surface tension and hydrophilic property were critical for droplet manipulation. The moving speed of the liquid droplet was measured as 3.33mm/sec. The results suggest that the opto-wetting system may be effective to overcome the shortcoming of traditional opto-electrowetting technique. The proposed opto-wetting droplet manipulation system could potentially applied for manipulating biomedical or pathological test specimens in the future.


2017 ◽  
Vol 15 (7) ◽  
pp. 491-501
Author(s):  
Sunun KHAMI ◽  
Wipawee KHAMWICHIT ◽  
Ratthapol RANGKUPAN ◽  
Kowit SUWANNAHONG

In this paper, toluene removal via photocatalytic oxidation using TiO2 dip coated nanofilms is presented. Nanofilms were synthesized from bacterial cellulose using the electrospinning technique. The physical properties of the nanofilms were analyzed by scanning electron microscopy (SEM). The ratio of bacterial cellulose/nylon used in the spinning process was 0.165:1. The results from SEM showed that the structure of the TiO2 composite nanofilms was rutile crystalline with an average particle size of 20 nm, and synthesized nanofilms had an average size of 20 - 30 nm. The band gap energies of TiO2-dip coated nanofilms ranged from 3.18 - 3.21 eV. SEM results of TiO2 coated nanofilms suggested that the TiO2 was rather uniformly distributed onto the surface of the nanofilms. The actual amount of TiO2 coated on the nanofilms was estimated using thermogravimetric analysis (TGA) for 1x1 cm2 surface area. It was found that 0.1852, 0.2897 and 0.7275 mg of TiO2 were coated on the surface of the nanofilms for 1, 2.5 and 5 % (weight) TiO2 dosage, respectively. The photocatalytic activity of the nanofilms was tested for the removal of gaseous toluene in a photocatalytic reactor. Experimental conditions were set as follows: UV light intensity of approximately 2.7 mW.cm-2, flow rate of 0.2 L.min-1, and an initial toluene concentration of about 200±20 ppm, and a retention time at 200 min. The degradation rate of toluene increased with increasing dosage of TiO2 from 1, 2.5 and 5 %. The nanofilms at a 5 % dosage yielded the highest removal efficiency of 92.71 %, followed by the 2.5 and 1 % dosage, respectively.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2360
Author(s):  
Seyedehmaryam Moosavi ◽  
Rita Yi Man Li ◽  
Chin Wei Lai ◽  
Yusliza Yusof ◽  
Sinyee Gan ◽  
...  

In this study, activated carbon (AC) from coconut shell, as a widely available agricultural waste, was synthesised in a simple one-step procedure and used to produce a magnetic Fe3O4/AC/TiO2 nano-catalyst for the degradation of methylene blue (MB) dye under UV light. Scanning electron microscopy revealed that TiO2 nanoparticles, with an average particle size of 45 to 62 nm, covered the surface of the AC porous structure without a reunion of its structure, which according to the TGA results enhanced the stability of the photocatalyst at high temperatures. The photocatalytic activities of synthesised AC, commercial TiO2, Fe3O4/AC, and Fe3O4/AC/TiO2 were compared, with Fe3O4/AC/TiO2 (1:2) exhibiting the highest catalytic activity (98%). Furthermore, evaluation of the recovery and reusability of the photocatalysts after treatment revealed that seven treatment cycles were possible without a significant reduction in the removal efficiency.


2020 ◽  
Vol 20 (6) ◽  
pp. 3770-3779 ◽  
Author(s):  
Umar Farooq ◽  
Farheen Naz ◽  
Ruby Phul ◽  
Nayeem Ahmad Pandit ◽  
Sapan Kumar Jain ◽  
...  

This paper reports the attempt to develop an efficient heterostructure photocatalyst by employing SrZrO3 as ferroelectric substrate with deposited nanostructured CdS semiconductor on the surface. Primarily bare SrZrO3 and CdS nanoparticles were synthesized by using polymeric citrate precursor and co-precipitation routes, respectively. The chemical deposition technique was used to develop the CdS over the surface of the pre-synthesized SrZrO3 nanoparticles. The synthesized bare nanoparticles and their heterostructure were characterized by XRD which shows the formation of orthorhombic and face centred cubic (FCC) phases of SrZrO3 and CdS, respectively. TEM was used to estimate the morphology and particle size of as-synthesized nanoparticles, which shows the average particle size of 14, 24 and 25 nm for SrZrO3, CdS and SrZrO3/CdS, respectively. The BET surface area of SrZrO3, CdS and SrZrO3/CdS samples was found to be 299, 304 and 312 m2/g respectively. Methylene blue was used as model pollutant to determine the photocatalytic activity of the synthesized nanomaterials. The heterostructure shows an enhanced activity as compared to bare nanoparticles. Dielectric constant and dielectric loss of the nanoparticles was investigated as a function of frequency at room temperature and as a function of temperature at 500 kHz. The room temperature dielectric constant for SrZrO3, CdS and SrZrO3/CdS was found to be 13.2, 17.8 and 25.5 respectively at 100 kHz.


2016 ◽  
Vol 680 ◽  
pp. 198-202
Author(s):  
Chao Wang ◽  
Si Qin Zhao ◽  
S. Asuha

In this paper, a series of mesoporous TiO2 photocatalyst were prepared by hydrothermal method using block copolymer P123 as template and Ti (OBu)4 as titanium source. The microstructure and spectroscopy performance of the prepared TiO2 were characterized by means of XRD, SEM, TEM, BET, and BJH analysis, and the photocatalytic activity of mesoporous TiO2 were examined by measuring the photodegradation of methyl orange , then discussed the best prepared conditions of mesoporous TiO2 photocatalyst. The results showed that the products were all anatase mesoporous TiO2 nanopowder, the average particle size is about 7nm and all have the Langmuir type IV pore structure. The best prepared condition: hydrothermal temperature is 160°C, hydrothermal time is 24h, mesoporous TiO2 photocatalyst has the BET surface area of 146m2/g , it’s photocatalytic degradation rate is 97.07% in an hour.


2019 ◽  
Vol 11 (2) ◽  
pp. 225-234
Author(s):  
S. Pande ◽  
M. M. Islam ◽  
S. C. Mohanta ◽  
Nasir Uddin

Single-domain manganese ferrite nanoparticles were synthesized through one-step chemical co-precipitation technique using diethanolamine which acted simultaneously as precipitating and capping agent. The synthesized nanoparticles were characterized by XRD, FTIR, TGA, EDX, FESEM and VSM. XRD pattern showed the presence of peaks corresponding to the single-phase inverse spinel structure with an average crystallite size of 59.6 nm. The average particle size determined by FESEM was 46.8 nm. In addition, the magnetic properties of the nanoparticles analyzed by VSM exhibited nearly superparamagnetic property with a high saturation magnetization of 77.31 emu/g with little coercivity (10.53 emu/g) and remanence (9.32 emu/g) at 300 K temperature. TGA and FTIR results confirmed the binding of diethanolamine onto the surface of manganese ferrite nanoparticles. The synthesized nanoparticles exhibited single crystalline phase with improved magnetic properties.  


2012 ◽  
Vol 622-623 ◽  
pp. 851-854 ◽  
Author(s):  
Masoumeh Tabatabaee ◽  
Paria Baziari ◽  
Navid Nasirizadeh ◽  
Hamed Dehghanizadeh

Nano-sized cadmium sulfid (CdS) was synthesized successfully by a simple method using ultrasonic irradiation in the presence of polyethylene glycol (PEG 2000). X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize the structure and morphology synthesized powder. The nanocrystaline of β-CdS was grown in face-centered cubic. The average particle size of synthesized CdS is ~25 nm. CdS suspensions have then been impregnated on cotton-based textile samples and the antibacterial activity of so-functionalized textiles has been studied with respect to E. coli. Results shows that CdS nanoparticles exhibit a strong antibacterial activity and can inhibit 97% of growth E. coli bacteria.


2009 ◽  
Vol 7 (1) ◽  
pp. 74-78 ◽  
Author(s):  
Seied Pourmortazavi ◽  
Iraj Kohsari ◽  
Seiedeh Hajimirsadeghi

AbstractThe present study concerns the electrochemical synthesis of basic copper carbonate nanoparticles by oxidation of metallic copper on the anode in an aqueous bicarbonate solution. This simple and one-step preparation can be considered as green synthesis. The scanning electron microscopy (SEM) analysis indicates that average particle size of the product is in the range of about 70 nm. On the other hand, basic copper carbonate micro-powder has been prepared, by mixing solutions of copper(II) sulphate and sodiu bicarbonate. The SEM analysis showed that the size of particles prepared in the same way is in the range of about 1 µm. In another part of this study, the thermal decomposition of micro and nanoparticles of copper carbonate produced by various methods was studied in air using TG-DTA techniques. The results of thermal study show that the decomposition of both samples occurs in single step. Also, the TG-DTA analysis of the nanoparticles indicates that the main thermal degradation occurs in the temperature range of 245–315°C. However, microparticles of Cu(OH)2 · CuCO3 decomposed endothermally in the temperature range of 230–330°C.


Sign in / Sign up

Export Citation Format

Share Document