scholarly journals Texture Evolution during Recrystallization and Grain Growth in Non-Oriented Electrical Steel Produced by Compact Strip Production Process

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 197
Author(s):  
Jun-Qiang Cong ◽  
Fei-Hu Guo ◽  
Jia-Long Qiao ◽  
Sheng-Tao Qiu ◽  
Hai-Jun Wang

Evolution of texture and α*-fiber texture formation mechanism of Fe-0.65%Si non-oriented electrical steel produced by Compact Strip Production (CSP) process during all the thermo-mechanical processing steps were investigated using electron backscatter diffraction (EBSD) and X-ray diffraction (XRD) techniques. Columnar crystal structure of cast slab is fine and well-developed. Textures of the hot-rolled band are quite different in the thickness direction. During annealing of cold-rolled sheet, γ-fiber texture grains would nucleate and grow preferentially, and α*-fiber texture grains mainly nucleate and grow in the shear zone of α-fiber texture of cold-rolled sheet. During the recrystallization process, γ-fiber texture gradually concentrated to {111}<112>, and γ and α*-fiber texture increased significantly. {111}<112> texture priority nucleation at the initial stage of recrystallization. Due to the advantages of nucleation position and quantity, the content of α*-fiber texture is greater than {111}<112> texture in the mid-recrystallization. During grain growth process, {111}<112> oriented grains would grow selectively by virtue of higher mobility, sizes and quantity advantages than that of {411}<148 > and {100}<120>, resulting in the gradual increase of γ-fiber texture and the decline of α *-fiber texture.

2011 ◽  
Vol 298 ◽  
pp. 203-208 ◽  
Author(s):  
Zi Li Jin ◽  
Wei Li ◽  
Yi Ming Li

With the help of orientation distribution function (ODF) analysis, experiments of different hot band grain microstructure 0.33% silicon steel were cold-rolled and annealed in the laboratory,to study the effect of the microstructure hot-rolled steel strip for cold rolled non-oriented silicon steel microstructure and texture of recrystallization annealing. The results show that hot rolled microstructure on cold rolled Non-Oriented Electrical Steel cold-rolled sheet evolution of texture and recrystallization have important influence, the quiaxed grain structure of steel by cold rolling and recrystallization annealing, the recrystallization speed than the fiber grain-based mixed crystals recrystallization fast , With the equiaxed grains made of cold rolled silicon steel after annealing the {110}<UVW> texture components was enhanced and {100}<uwv> texture components weakened. Different microstructure condition prior to cold rolling in the recrystallization annealing process the texture evolution has the obvious difference, the equiaxial grain steel belt cold rolling and annealing, has the strong crystal orientation. This shows that the equiaxed grain when hot microstructure is detrimental to the magnetic properties of cold-rolled non-oriented silicon steel to improve and increase.


2007 ◽  
Vol 546-549 ◽  
pp. 347-350 ◽  
Author(s):  
Li Li ◽  
Tie Tao Zhou ◽  
Huan Xi Li ◽  
Chang Qi Chen ◽  
Qiu Lin Wu ◽  
...  

Texture evolution in Mg-13wt%Li-X alloy cold-rolled from 1.35 mm to 0.34 mm thickness was investigated, by obtaining pole figures and orientation distribution functions (ODFs). Punching tests were conducted to reveal the effect of texture nature on formability. It was found that: (1) the textures of the as-received sheet are characterized by α fiber texture, a γ fiber texture and a cubic texture in both cold-rolled and annealed conditions; (2) with thickness reduction though rolling, the intensity of the γ fiber texture continuously increases and finally the γ fiber texture connects into {111} tube texture, the texture of <11 0> orientation flows towards {223}<11 0> along α fiber, the cubic texture of {001}<100> turns into {035}<100>, while some grains concentrate at {011}<41 1> orientation; (3) good punching behavior of the cold-rolled sheet corresponds to the appearance of a well-developed γ fiber texture.


2015 ◽  
Vol 778 ◽  
pp. 105-109
Author(s):  
Hui Tian ◽  
Yi Wang ◽  
Pan Wang ◽  
Ya Ru Liang ◽  
Lin Ma ◽  
...  

The cube texture evolution during annealing of the heavy cold-rolled Cu-45at.%Ni alloy tapes were investigated by XRD and electron back scattering diffraction techniques. The results indicated that the fraction of Copper-type rolling texture was slightly strengthened during recovery, and then strongly reduced during recrystallization. The cube texture was formed by consuming the rolling texture components during recrystallization process, and the S, Copper and Brass orientations were consumed together via cube grain growth. A strong cube-textured Cu-45at.%Ni alloy substrate with the cube texture fraction of 98.6 % (< 10°) was obtained after annealing at 1000 oC for 1 h.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1301
Author(s):  
Jia-long Qiao ◽  
Fei-hu Guo ◽  
Jin-wen Hu ◽  
Li Xiang ◽  
Sheng-tao Qiu ◽  
...  

Nitrogen and Sulfur in non-oriented electrical steel would form precipitates, which would severely affect its magnetic properties. Precipitates in compact strip production (CSP) process non-oriented electrical steel were investigated using a transmission electron microscope (TEM) and scanning electron microscopy (SEM). The precipitation mechanism and influence on grain growth were analyzed experimentally and theoretically. The results showed that the main particles in steel were AlN, TiN, MnS, Cu2S, and fine oxide inclusions. The spherical or quasi-spherical of MnS and Cu2S were more liable to precipitate along grain boundaries. During the soaking process, the amount of MnS precipitated on the grain boundary was much larger than that of Cu2S. AlN and TiN in cubic shape precipitated inside grains or grain boundaries. Precipitates preferentially nucleated at grain boundaries, and TiN, MnS mainly precipitated during soaking. In the subsequent processes after soaking, AlN and Cu2S would precipitate unceasingly with the decrease in the average size. The distribution density, the volume fraction, and the average size of the precipitates in the annealed sheets were 9.08 × 1013/cm3, 0.06%, and 54.3 nm, respectively. Precipitates with the grain size of 30–500 nm hindered the grain growth, the grains with 100–300 nm played a major role in inhibiting the grain growth, and the grains with the grain size of 70–100 nm took the second place.


2011 ◽  
Vol 306-307 ◽  
pp. 116-119
Author(s):  
Masahiko Demura ◽  
Ya Xu ◽  
Toshiyuki Hirano

This article presents the texture evolution and the ductility improvement of the cold-rolled foils of boron-free Ni3Al during the recrystallization and the subsequent grain growth. The cold-rolled foils had sharp {110} textures. After the recrystallization at 873K/0.5h, the texture was disintegrated with several texture components. Interestingly, most of them had a single rotation relationship. i.e. 40˚ around <111>. With the progress of the grain growth, however, the texture returned to the sharp, cold-rolled textures. This two-stage texture evolution, called as “Texture memory effect”, was explained assuming a high mobility of the grain boundary with the 40˚<111> rotation relationship. The texture returning was highly effective to improve the ductility of the foils.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4932
Author(s):  
Guoqin Wu ◽  
Jianmin Yu ◽  
Leichen Jia ◽  
Wenlong Xu ◽  
Beibei Dong ◽  
...  

Reciprocating Upsetting-Extrusion (RUE) deformation process can significantly refine the grains size and weaken the basal plane texture by applying a large cumulative strain to the alloy, which is of great significance to weaken the anisotropy of magnesium (Mg) alloys and increase the application range. In this paper, the Mg-8.27Gd-3.18Y-0.43Zr (wt %) alloy was subjected to isothermal multi-passes RUE. The microstructure and texture evolution, crystal orientation-dependent deformation mechanism of the alloy after deformation were investigated. The results clearly show that with the increase of RUE process, the grains are significantly refined through continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX) mechanisms, the uniformity of the microstructure is improved, and the texture intensity is reduced. At the same time, a large number of particle phases are dynamically precipitated during the deformation process, promoting grain refinement by the particle-stimulated nucleation (PSN) mechanism. The typical [10-10] fiber texture is produced after one pass due to the basal plane of the deformed grains with a relatively high proportion is gradually parallel to the ED during extrusion process. However, the texture concentration is reduced compared with the traditional extrusion deformation, indicating that the upsetting deformation has a certain delay effect on the subsequent extrusion texture generation. After three or four passes deformation, the grain orientation is randomized due to the continuous progress of the dynamic recrystallization process.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1380
Author(s):  
Sofia Papadopoulou ◽  
Athina Kontopoulou ◽  
Evangelos Gavalas ◽  
Spyros Papaefthymiou

During forming, thickness reduction and thermal treatment affect the recrystallization and evolution of the crystallographic texture of metallic materials. The present study focuses on the consequences of rolling reduction of a widespread aluminum alloy with numerous automotive, marine and general-purpose applications, namely Al 5182. Emphasis is laid on the crystallographic texture and mechanical properties on both hot and cold-rolled semi-final products. In particular, a 2.8 mm-thick hot-rolled product was examined in the as-received condition, while two cold-rolled sheets, one 1.33 mm and the other 0.214 mm thick, both originating from the 2.8 mm material, were examined in both as-received and annealed (350 °C for 1 h) conditions. Electron back-scatter diffraction indicated the presence of a large percentage of random texture as well as a weak recrystallization texture for the hot-rolled product, whereas in the case of cold rolling the evolution of β-fiber texture was noted. In addition, tensile tests showed that both the anisotropy as well as the mechanical properties of the cold-rolled properties improved after annealing, being comparable to hot-rolled ones.


2007 ◽  
Vol 550 ◽  
pp. 339-344 ◽  
Author(s):  
Shigeo Saimoto ◽  
Hai Ou Jin

A nominally pure Al slab was thermo-mechanically treated to result in a near random texture of 90 m grain size. Subsequent cold rolling with intermediate anneals at 230, 275, and 300°C reduced the Fe solute to near equilibrium compositions below 0.5 ppm atomic. The final cold rolled sheet continuously recrystallized; grain growth of this structure is reported. A grain-growth kinetics mapping was generated, correlating the parameters of Fe-in-Al solubility limit, Fe diffusivities in the grain boundaries and the Al lattice and the activation energies for migration rates.


2010 ◽  
Vol 297-301 ◽  
pp. 359-364 ◽  
Author(s):  
M. Matsushita ◽  
H. Ohfuji

Recrystallization processing of cold-rolled copper after isothermal annealing was investigated using high-resolution electron backscattered diffraction pattern analysis. The fiber texture is obtained by cold rolling with the rolled direction oriented along {111}, and the transverse and nominal directions have a random orientation. An isothermal recrystallization process at 150°C was investigated. Initially, rotations of the orientations occur from {111} to {100} and then small misfit angle boundaries decreased. Accompanying this change, the fiber-shaped grains change to a round shape grain and their sizes decrease. Considering these tendencies, we determined that rotation at subgrain boundaries is activated by isothermal annealing and subboundaries grow the boundary misfit angle >15 º. With further annealing, those grains surrounded by grain boundaries greater than 15º expanded. The rolling, transverse, and nominal orientations rotate {100}. Subsequently, a twin boundary appeared, and the fraction of twin boundaries increased.


Sign in / Sign up

Export Citation Format

Share Document