scholarly journals Monodelphis domestica: a new source of mammalian primary neurons in vitro

2022 ◽  
Vol 17 (8) ◽  
pp. 0
Author(s):  
Jelena Ban ◽  
Miranda Mladinic
2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Anthony R. Anzell ◽  
Garrett M. Fogo ◽  
Zoya Gurm ◽  
Sarita Raghunayakula ◽  
Joseph M. Wider ◽  
...  

AbstractMitochondrial dynamics and mitophagy are constitutive and complex systems that ensure a healthy mitochondrial network through the segregation and subsequent degradation of damaged mitochondria. Disruption of these systems can lead to mitochondrial dysfunction and has been established as a central mechanism of ischemia/reperfusion (I/R) injury. Emerging evidence suggests that mitochondrial dynamics and mitophagy are integrated systems; however, the role of this relationship in the context of I/R injury remains unclear. To investigate this concept, we utilized primary cortical neurons isolated from the novel dual-reporter mitochondrial quality control knockin mice (C57BL/6-Gt(ROSA)26Sortm1(CAG-mCherry/GFP)Ganl/J) with conditional knockout (KO) of Drp1 to investigate changes in mitochondrial dynamics and mitophagic flux during in vitro I/R injury. Mitochondrial dynamics was quantitatively measured in an unbiased manner using a machine learning mitochondrial morphology classification system, which consisted of four different classifications: network, unbranched, swollen, and punctate. Evaluation of mitochondrial morphology and mitophagic flux in primary neurons exposed to oxygen-glucose deprivation (OGD) and reoxygenation (OGD/R) revealed extensive mitochondrial fragmentation and swelling, together with a significant upregulation in mitophagic flux. Furthermore, the primary morphology of mitochondria undergoing mitophagy was classified as punctate. Colocalization using immunofluorescence as well as western blot analysis revealed that the PINK1/Parkin pathway of mitophagy was activated following OGD/R. Conditional KO of Drp1 prevented mitochondrial fragmentation and swelling following OGD/R but did not alter mitophagic flux. These data provide novel evidence that Drp1 plays a causal role in the progression of I/R injury, but mitophagy does not require Drp1-mediated mitochondrial fission.


2009 ◽  
Vol 111 (4) ◽  
pp. 741-752 ◽  
Author(s):  
Yu Zhen ◽  
Yuanlin Dong ◽  
Xu Wu ◽  
Zhipeng Xu ◽  
Yan Lu ◽  
...  

Background Some anesthetics have been suggested to induce neurotoxicity, including promotion of Alzheimer's disease neuropathogenesis. Nitrous oxide and isoflurane are common anesthetics. The authors set out to assess the effects of nitrous oxide and/or isoflurane on apoptosis and beta-amyloid (Abeta) levels in H4 human neuroglioma cells and primary neurons from naïve mice. Methods The cells or neurons were exposed to 70% nitrous oxide and/or 1% isoflurane for 6 h. The cells or neurons and conditioned media were harvested at the end of the treatment. Caspase-3 activation, apoptosis, processing of amyloid precursor protein, and Abeta levels were determined. Results Treatment with a combination of 70% nitrous oxide and 1% isoflurane for 6 h induced caspase-3 activation and apoptosis in H4 naïve cells and primary neurons from naïve mice. The 70% nitrous oxide plus 1% isoflurane, but neither alone, for 6 h induced caspase-3 activation and apoptosis, and increased levels of beta-site amyloid precursor protein-cleaving enzyme and Abeta in H4-amyloid precursor protein cells. In addition, the nitrous oxide plus isoflurane-induced Abeta generation was reduced by a broad caspase inhibitor, Z-VAD. Finally, the nitrous oxide plus isoflurane-induced caspase-3 activation was attenuated by gamma-secretase inhibitor L-685,458, but potentiated by exogenously added Abeta. Conclusion These results suggest that the common anesthetics nitrous oxide plus isoflurane may promote neurotoxicity by inducing apoptosis and increasing Abeta levels. The generated Abeta may further potentiate apoptosis to form another round of apoptosis and Abeta generation. More studies, especially the in vivo confirmation of these in vitro findings, are needed.


1992 ◽  
Vol 103 (1) ◽  
pp. 233-243
Author(s):  
G. Meyerson ◽  
K.H. Pfenninger ◽  
S. Pahlman

Nerve growth cones of primary neurons are highly enriched in the proto-oncogene product pp60c-src. In order to investigate this molecule further in growing neuronal cells, growth cone and cell body fractions were prepared from human SH-SY5Y neuroblastoma cells differentiated neuronally in vitro under the influence of phorbol ester. The fractions were characterized ultrastructurally and by biochemical criteria. The neuronal (pp60c-srcN) and the fibroblastic (pp60c-src) forms of pp60src are slightly enriched and activated in the growth cones relative to the perikarya. Immunoprecipitates of pp60src from differentiated SH-SY5Y growth cones contain at least four phosphoproteins in addition to pp60src. One of these, pp38, migrates as a 100–140 kDa complex with pp60src under non-reducing conditions of gel electrophoresis. The pp38/pp60src complex is not easily detected in non-differentiated SH-SY5Y cells or perikarya of differentiated SH-SY5Y cells, but it is highly enriched in the growth cone preparation. These data suggest that growth-cone pp60src exists in a disulfide-linked oligomeric complex. The complex appears to be assembled only in the cell periphery and may be dependent upon neuronal differentiation.


2021 ◽  
Vol 15 ◽  
Author(s):  
Antonela Petrović ◽  
Jelena Ban ◽  
Ivana Tomljanović ◽  
Marta Pongrac ◽  
Matea Ivaničić ◽  
...  

Primary dissociated neuronal cultures have become a standard model for studying central nervous system (CNS) development. Such cultures are predominantly prepared from the hippocampus or cortex of rodents (mice and rats), while other mammals are less used. Here, we describe the establishment and extensive characterization of the primary dissociated neuronal cultures derived from the cortex of the gray South American short-tailed opossums, Monodelphis domestica. Opossums are unique in their ability to fully regenerate their CNS after an injury during their early postnatal development. Thus, we used cortex of postnatal day (P) 3–5 opossum to establish long-surviving and nearly pure neuronal cultures, as well as mixed cultures composed of radial glia cells (RGCs) in which their neurogenic and gliogenic potential was confirmed. Both types of cultures can survive for more than 1 month in vitro. We also prepared neuronal cultures from the P16–18 opossum cortex, which were composed of astrocytes and microglia, in addition to neurons. The long-surviving opossum primary dissociated neuronal cultures represent a novel mammalian in vitro platform particularly useful to study CNS development and regeneration.


2021 ◽  
Vol 15 ◽  
Author(s):  
Éva M. Szegő ◽  
Fabian Boß ◽  
Daniel Komnig ◽  
Charlott Gärtner ◽  
Lennart Höfs ◽  
...  

Reducing α-synuclein pathology constitutes a plausible strategy against Parkinson’s disease. As we recently demonstrated, the β-wrapin protein AS69 binds an N-terminal region in monomeric α-synuclein, interferes with fibril nucleation, and reduces α-synuclein aggregation in vitro and in a fruit fly model of α-synuclein toxicity. The aim of this study was to investigate whether AS69 also reduces α-synuclein pathology in mammalian neurons. To induce α-synuclein pathology, primary mouse neurons were exposed to pre-formed fibrils (PFF) of human α-synuclein. PFF were also injected into the striatum of A30P-α-synuclein transgenic mice. The extent of α-synuclein pathology was determined by phospho-α-synuclein staining and by Triton X-100 solubility. The degeneration of neuronal somata, dendrites, and axon terminals was determined by immunohistochemistry. AS69 and PFF were taken up by primary neurons. AS69 did not alter PFF uptake, but AS69 did reduce PFF-induced α-synuclein pathology. PFF injection into mouse striatum led to α-synuclein pathology and dystrophic neurites. Co-injection of AS69 abrogated PFF-induced pathology. AS69 also reduced the PFF-induced degeneration of dopaminergic axon terminals in the striatum and the degeneration of dopaminergic dendrites in the substantia nigra pars reticulata. AS69 reduced the activation of astroglia but not microglia in response to PFF injection. Collectively, AS69 reduced PFF-induced α-synuclein pathology and the associated neurodegeneration in primary neurons and in mouse brain. Our data therefore suggest that small proteins binding the N-terminus of α-synuclein monomers are promising strategies to modify disease progression in Parkinson’s disease.


Author(s):  
Arun R Chavan ◽  
Oliver W Griffith ◽  
Daniel J Stadtmauer ◽  
Jamie Maziarz ◽  
Mihaela Pavlicev ◽  
...  

Abstract Mammalian pregnancy evolved in the therian stem lineage, that is, before the common ancestor of marsupials and eutherian (placental) mammals. Ancestral therian pregnancy likely involved a brief phase of attachment between the fetal and maternal tissues followed by parturition—similar to the situation in most marsupials including the opossum. In all eutherians, however, embryo attachment is followed by implantation, allowing for a stable fetal–maternal interface and an extended gestation. Embryo attachment induces an attachment reaction in the uterus that is homologous to an inflammatory response. Here, we elucidate the evolutionary mechanism by which the ancestral inflammatory response was transformed into embryo implantation in the eutherian lineage. We performed a comparative uterine transcriptomic and immunohistochemical study of three eutherians, armadillo (Dasypus novemcinctus), hyrax (Procavia capensis), and rabbit (Oryctolagus cuniculus); and one marsupial, opossum (Monodelphis domestica). Our results suggest that in the eutherian lineage, the ancestral inflammatory response was domesticated by suppressing one of its modules detrimental to pregnancy, namely, neutrophil recruitment by cytokine IL17A. Further, we propose that this suppression was mediated by decidual stromal cells, a novel cell type in eutherian mammals. We tested a prediction of this model in vitro and showed that decidual stromal cells can suppress the production of IL17A from helper T cells. Together, these results provide a mechanistic understanding of early stages in the evolution of eutherian pregnancy.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Yaoyun Kuang ◽  
Xuan Zheng ◽  
Lin Zhang ◽  
Irina Graf ◽  
Mathias Bähr ◽  
...  

Transplantation of mesenchymal stem cells (MSCs) yields neuroprotection and enhanced neurological recovery in pre-clinical stroke models, which is mediated by the secretion of extracellular vesicles (EVs). The latter are a heterogenous group of vesicles containing microvesicles, exosomes, and apoptotic bodies. The neuroprotective cargo of EVs, however, has not yet been identified. To investigate such a cargo and its underlying mechanism, we designed a series of in vitro and in vivo experiments. Primary neurons were exposed to oxygen-glucose-deprivation (OGD) and co-cultured with either adipose-derived MSCs (ADMSCs) or treated with ADMSC-secreted EVs. As expected, both ADMSCs and ADMSC-secreted EVs significantly reduced neuronal death after 12 h of OGD and 24 h of reoxygenation, showing no difference between the two treatment groups. Screening for various signaling cascades being involved in the interaction between ADMSCs and neurons revealed a decreased autophagic flux as well as a declined p53-Bnip3 activity. However, these signaling cascades were significantly blocked when ADMSCs were pretreated with the inhibitor of exosomal secretion GW4869. In light of miR-25-3p being the most highly expressed miRNA in ADMSC-EVs interacting with the p53 pathway, further in vitro work focused on this pathway. Treatment with a miR-25-3p oligonucleotide mimic reduced cell death, whereas the anti-oligonucleotide increased autophagic flux and cell death by modulating p53-Bnip3 signaling in primary neurons exposed to OGD. Likewise, native ADMSC-EVs but not EVs obtained from ADMSCs pretreated with the anti-miR-25-3p oligonucleotide (ADMSC-EVs anti-miR-25-3p ) confirmed the aforementioned in vitro observations in C57BL6 mice exposed to cerebral ischemia. Infarct size was reduced and neurological recovery was increased in mice treated with native ADMSC-EVs when compared to ADMSC-EVs anti-miR-25-3p . As such, ADMSCs induce neuroprotection - at least in part - by improved autophagic flux through secreted EVs containing miR-25-3p. Hence, our work for the first time uncovers a key factor in naturally secreted ADMSC-EVs for the regulation of autophagy and induction of neuroprotection in a pre-clinical stroke model.


2012 ◽  
Vol 17 (5) ◽  
pp. 692-696 ◽  
Author(s):  
Shane Marine ◽  
Jamie Freeman ◽  
Antonella Riccio ◽  
Marie-Louise Axenborg ◽  
Johan Pihl ◽  
...  

Primary neurons in culture are considered to be a highly relevant model in the study of neuronal development and activity. They can be cultivated and differentiated in vitro but are difficult to transfect using conventional methods. To address this problem, a capillary electroporation system called Cellaxess Elektra was developed for efficient and reproducible transfection of primary cortical and hippocampal neurons without significant impact on cell morphology and viability. The cells are transfected in any stage of differentiation and development, directly in cell culture plates. Genetic material is delivered in situ to as many as 384 samples at a time, which enables both high-throughput and high-quality screening for hard-to-transfect primary cells, meaning that gene function can be studied on a genome-wide scale in cells previously inaccessible to genetic manipulation.


Sign in / Sign up

Export Citation Format

Share Document