scholarly journals Inferring Past Climate from Moraine Evidence Using Glacier Modelling

2021 ◽  
Author(s):  
◽  
Alice Doughty

<p>Glacier length fluctuations reflect changes in climate, most notably temperature and precipitation. By this reasoning, moraines, which represent former glacier extent, can be used to estimate past climate. However, estimating palaeoclimate from moraines is not a straight-forward process and involves several assumptions. For example, recent studies have suggested that interannual stochastic variability in temperature in a steady-state climate can cause a glacier to experience kilometre-scale fluctuations. Such studies cast doubt on the usefulness of moraines as climate proxy indicators. Detailed glacial geomorphological maps and moraine chronologies have improved our understanding of the spatial and temporal extent of past glacial events in New Zealand. Palaeoclimate estimates associated with these moraines have thus-far come from simple methods, such as the accumulation area ratio, with unquantifiable uncertainties. I used a numerical modelling approach to approximate the present-day glacier mass balance pattern, which includes the effects of snow avalanching on glacier mass balance. I then used the models to reconstruct palaeoclimate for Lateglacial and Holocene glacial events in New Zealand, and to better understand moraine-glacier-climate relationships. The climate reconstructions come from simulating past glacier expansions to specific terminal moraines, but I also simulated glacier fluctuations in response to a previously derived temperature reconstruction, and to interannual stochastic variability in temperature. The purpose behind each simulation was to identify the drivers of significant glacier fluctuations. The modelling results support the hypothesis that New Zealand moraine records reflect past climate, especially changes in temperature. Lateglacial climate was reconstructed to be 2-3 C lower than the present day. This temperature range agrees well with previous estimates from moraines and other climate proxy records in New Zealand. Modelled temperature estimates for the Holocene moraines are slightly colder than those derived from simpler methods, due to a non-linear relationship found between snowline lowering and glacier length. This relationship results from the specific valley shape and glacier geometry, and is likely to occur in other, similarly-shaped glacier valleys. The simulations forced by interannual stochastic variability in temperature do not show significant (>300 m) fluctuations in the glacier terminus. Such fluctuations can not explain the Holocene moraine sequence that I examined, which extends >2 km beyond the present-day glacier terminus. Stochastic temperature change could, however, in part, cause fluctuations in glacier extent during an overall glacier recession. Modelling shows that it is also unlikely that glaciers advanced to Holocene and Lateglacial moraine positions as a result of precipitation changes alone. For these reasons, temperature changes are a necessary part of explaining past glacier extents, especially during the Lateglacial, and the moraines examined here likely reflect changes in mean climate in New Zealand. The glacier modelling studies indicate that simpler methods, such as the accumulation area ratio, can be used to appropriately reconstruct past climate from glacial evidence, as long as the glacier catchment has a straight forward geometry, shallow bed slope and no tributary glaciers. Non-linear relationships between climate change and glacier length develop when valley shape is more complex, and glaciers within these systems are probably better simulated using a modelling approach. Using a numerical modelling approach, it is also possible to gain a greater understanding of glacier response time, length sensitivities, and estimates of ice extent in valleys within the model domain where geomorphic evidence is not available. In this manner, numerical models can be used as a tool for understanding past climate and glacier sensitivity, thus improving the confidence in the palaeoclimate interpretations.</p>

2021 ◽  
Author(s):  
◽  
Alice Doughty

<p>Glacier length fluctuations reflect changes in climate, most notably temperature and precipitation. By this reasoning, moraines, which represent former glacier extent, can be used to estimate past climate. However, estimating palaeoclimate from moraines is not a straight-forward process and involves several assumptions. For example, recent studies have suggested that interannual stochastic variability in temperature in a steady-state climate can cause a glacier to experience kilometre-scale fluctuations. Such studies cast doubt on the usefulness of moraines as climate proxy indicators. Detailed glacial geomorphological maps and moraine chronologies have improved our understanding of the spatial and temporal extent of past glacial events in New Zealand. Palaeoclimate estimates associated with these moraines have thus-far come from simple methods, such as the accumulation area ratio, with unquantifiable uncertainties. I used a numerical modelling approach to approximate the present-day glacier mass balance pattern, which includes the effects of snow avalanching on glacier mass balance. I then used the models to reconstruct palaeoclimate for Lateglacial and Holocene glacial events in New Zealand, and to better understand moraine-glacier-climate relationships. The climate reconstructions come from simulating past glacier expansions to specific terminal moraines, but I also simulated glacier fluctuations in response to a previously derived temperature reconstruction, and to interannual stochastic variability in temperature. The purpose behind each simulation was to identify the drivers of significant glacier fluctuations. The modelling results support the hypothesis that New Zealand moraine records reflect past climate, especially changes in temperature. Lateglacial climate was reconstructed to be 2-3 C lower than the present day. This temperature range agrees well with previous estimates from moraines and other climate proxy records in New Zealand. Modelled temperature estimates for the Holocene moraines are slightly colder than those derived from simpler methods, due to a non-linear relationship found between snowline lowering and glacier length. This relationship results from the specific valley shape and glacier geometry, and is likely to occur in other, similarly-shaped glacier valleys. The simulations forced by interannual stochastic variability in temperature do not show significant (>300 m) fluctuations in the glacier terminus. Such fluctuations can not explain the Holocene moraine sequence that I examined, which extends >2 km beyond the present-day glacier terminus. Stochastic temperature change could, however, in part, cause fluctuations in glacier extent during an overall glacier recession. Modelling shows that it is also unlikely that glaciers advanced to Holocene and Lateglacial moraine positions as a result of precipitation changes alone. For these reasons, temperature changes are a necessary part of explaining past glacier extents, especially during the Lateglacial, and the moraines examined here likely reflect changes in mean climate in New Zealand. The glacier modelling studies indicate that simpler methods, such as the accumulation area ratio, can be used to appropriately reconstruct past climate from glacial evidence, as long as the glacier catchment has a straight forward geometry, shallow bed slope and no tributary glaciers. Non-linear relationships between climate change and glacier length develop when valley shape is more complex, and glaciers within these systems are probably better simulated using a modelling approach. Using a numerical modelling approach, it is also possible to gain a greater understanding of glacier response time, length sensitivities, and estimates of ice extent in valleys within the model domain where geomorphic evidence is not available. In this manner, numerical models can be used as a tool for understanding past climate and glacier sensitivity, thus improving the confidence in the palaeoclimate interpretations.</p>


2018 ◽  
Vol 199 ◽  
pp. 09001
Author(s):  
Renaud Franssen ◽  
Serhan Guner ◽  
Luc Courard ◽  
Boyan Mihaylov

The maintenance of large aging infrastructure across the world creates serious technical, environmental, and economic challenges. Ultra-high performance fibre-reinforced concretes (UHPFRC) are a new generation of materials with outstanding mechanical properties as well as very high durability due to their extremely low permeability. These properties open new horizons for the sustainable rehabilitation of aging concrete structures. Since UHPFRC is a young and evolving material, codes are still either lacking or incomplete, with recent design provisions proposed in France, Switzerland, Japan, and Australia. However, engineers and public agencies around the world need resources to study, model, and rehabilitate structures using UHPFRC. As an effort to contribute to the efficient use of this promising material, this paper presents a new numerical modelling approach for UHPFRC-strengthened concrete members. The approach is based on the Diverse Embedment Model within the global framework of the Disturbed Stress Field Model, a smeared rotating-crack formulation for 2D modelling of reinforced concrete structures. This study presents an adapted version of the DEM in order to capture the behaviour of UHPFRC by using a small number of input parameters. The model is validated with tension tests from the literature and is then used to model UHPFRC-strengthened elements. The paper will discuss the formulation of the model and will provide validation studies with various tests of beams, columns and walls from the literature. These studies will demonstrate the effectiveness of the proposed modelling approach.


Author(s):  
Amjad Aliewi ◽  
Harish Bhandary ◽  
Habib Al-Qallaf ◽  
Chidambaram Sabarathinam ◽  
Jasim Al-Kandari

1987 ◽  
Vol 9 ◽  
pp. 104-108 ◽  
Author(s):  
D.K. Hall ◽  
J.P. Ormsby ◽  
R.A. Bindschadler ◽  
H. Siddalingaiah

Landsat Thematic Mapper (TM) data have been analyzed to study the reflectivity characteristics of three glaciers: the Grossglockner mountain group of glaciers in Austria and the McCall and Meares Glaciers in Alaska, USA. The ratio of TM band 4 (0.76–0.90 μm) to TM band 5 (1.55–1.75 μm) was found to be useful for enhancing reflectivity differences on the glaciers. Using this ratio, distinct zones of similar reflectivity were noted on the Grossglockner mountain group of glaciers and on the Meares Glacier; no distinct zones were observed on the McCall Glacier. On the TM subscene containing the Grossglockner mountain group of glaciers, 28.2% of the glacierized area was determined to be in the zone corresponding most closely to the ablation area, and 71.8% with the location of the accumulation area. Using these measurements, the glacier system has an accumulation area ratio (AAR) of approximately 0.72. Within the accumulation area, two zones of different reflectivity were delineated. Radiometric surface temperatures were measured using TM band 6 (10.4–12.5 μm) on the Grossglockner mountain group of glaciers and on the Meares Glacier. The average radiometric surface temperature of the Grossglockner mountain group of glaciers decreased from 0.9 ± 0.34 °C in the ablation area, to −0.9 ± 0.83 C in the accumulation area.


1985 ◽  
Vol 31 (109) ◽  
pp. 205-213 ◽  
Author(s):  
Fred F. Hawkins

AbstractThe fiordlands south of Merchants Bay contain an extensive, well-preserved moraine record of a late Foxe advance of local valley glaciers. This has allowed accurate reconstruction of former glacier margins and computation of former equilibrium-line altitudes (ELAs) by a variety of methods. Statistical comparison of three methods (maximum lateral-moraine elevation, median elevation, and accumulation area ratio (AAR)) shows that different techniques can give different results for the same glaciers. Lateral moraines gave estimates that were too low, probably due to post-glacial erosion or to non-deposition. Median elevations and the AAR method produced statistically similar results but only for glaciers of simple geometry. The median-elevation method fails to take into account variations in valley morphology and glaciological parameters, and so is not reliable in all situations. The AAR method is supported by empirical evidence and is the best of the three methods for estimating former ELAs.Analysis of trend surfaces of present and late Foxe ELAs shows changes in elevation and orientation through time due to changing environmental factors. Present ELAs are strongly influenced by local factors, southerly storm tracks, and warm maritime conditions. Paleo-ELAs do not show this influence, suggesting that Davis Strait may have been ice-covered during the late Foxe stade and that storm tracks were from the north.


2017 ◽  
Vol 58 (75pt2) ◽  
pp. 99-109 ◽  
Author(s):  
Sayli Atul Tawde ◽  
Anil V. Kulkarni ◽  
Govindasamy Bala

ABSTRACTAn improved understanding of fresh water stored in the Himalaya is crucial for water resource management in South Asia and can be inferred from glacier mass-balance estimates. However, field investigations in the rugged Himalaya are limited to a few individual glaciers and short duration. Therefore, we have recently developed an approach that combines satellite-derived snowlines, a temperature-index melt model and the accumulation-area ratio method to estimate annual mass balance of glaciers at basin scale and for a long period. In this investigation, the mass balance of 146 glaciers in the Chandra basin, western Himalaya, is estimated from 1984 to 2012. We estimate the trend in equilibrium line altitude of the basin as +113 m decade−1and the mean mass balance as −0.61 ± 0.46 m w.e. a−1. Our basin-wide mass-balance estimates are in agreement with the geodetic method during 1999–2012. Sensitivity analysis suggests that a 20% increase in precipitation can offset changes in mass balance for a 1 °C temperature rise. A water loss of 18% of the total basin volume is estimated, and 67% for small and low-altitude glaciers during 1984–2012, indicating a looming water scarcity crisis for villages in this valley.


Sign in / Sign up

Export Citation Format

Share Document