molecular transporters
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 18)

H-INDEX

24
(FIVE YEARS 2)

Drug Delivery ◽  
2022 ◽  
Vol 29 (1) ◽  
pp. 270-283
Author(s):  
Akula S. N. Murthy ◽  
Sanket Das ◽  
Tejinder Singh ◽  
Tae-Wan Kim ◽  
Nasim Sepay ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael Pycraft Hughes ◽  
Emily J. Kruchek ◽  
Andrew D. Beale ◽  
Stephen J. Kitcatt ◽  
Sara Qureshi ◽  
...  

AbstractEven in nonexcitable cells, the membrane potential Vm is fundamental to cell function, with roles from ion channel regulation, development, to cancer metastasis. Vm arises from transmembrane ion concentration gradients; standard models assume homogeneous extracellular and intracellular ion concentrations, and that Vm only exists across the cell membrane and has no significance beyond it. Using red blood cells, we show that this is incorrect, or at least incomplete; Vm is detectable beyond the cell surface, and modulating Vm produces quantifiable and consistent changes in extracellular potential. Evidence strongly suggests this is due to capacitive coupling between Vm and the electrical double layer, rather than molecular transporters. We show that modulating Vm changes the extracellular ion composition, mimicking the behaviour if voltage-gated ion channels in non-excitable channels. We also observed Vm-synchronised circadian rhythms in extracellular potential, with significant implications for cell–cell interactions and cardiovascular disease.


2021 ◽  
Vol 22 (15) ◽  
pp. 8254
Author(s):  
Ekaterina Sukhova ◽  
Daria Ratnitsyna ◽  
Vladimir Sukhov

H+-ATP-ases, which support proton efflux through the plasma membrane, are key molecular transporters for electrogenesis in cells of higher plants. Initial activities of the transporters can influence the thresholds of generation of electrical responses induced by stressors and modify other parameters of these responses. Previously, it was theoretically shown that the stochastic heterogeneity of individual cell thresholds for electrical responses in a system of electrically connected neuronal cells can decrease the total threshold of the system (“diversity-induced resonance”, DIR). In the current work, we tested a hypothesis about decreasing the thresholds of generation of cooling-induced electrical responses in a system of electrically connected plant cells with increasing stochastic spatial heterogeny in the initial activities of H+-ATP-ases in these cells. A two-dimensional model of the system of electrically connected excitable cells (simple imitation of plant leaf), which was based on a model previously developed in our works, was used for the present investigation. Simulation showed that increasing dispersion in the distribution of initial activities of H+-ATP-ases between cells decreased the thresholds of generation of cooling-induced electrical responses. In addition, the increasing weakly influenced the amplitudes of electrical responses. Additional analysis showed two different mechanisms of the revealed effect. The increasing spatial heterogeneity in activities of H+-ATP-ases induced a weak positive shift of the membrane potential at rest. The shift decreased the threshold of electrical response generation. However, the decreased threshold induced by increasing the H+-ATP-ase activity heterogeneity was also observed after the elimination of the positive shift. The result showed that the “DIR-like” mechanism also participated in the revealed effect. Finally, we showed that the standard deviation of the membrane potentials before the induction of action potentials could be used for the estimation of thresholds of cooling-induced plant electrical responses. Thus, spatial heterogeneity in the initial activities of H+-ATP-ases can be a new regulatory mechanism influencing the generation of electrical responses in plants under actions of stressors.


2021 ◽  
Vol 9 ◽  
Author(s):  
Claudine Nicole Herlan ◽  
Anna Meschkov ◽  
Ute Schepers ◽  
Stefan Bräse

Addressing intracellular targets is a challenging task that requires potent molecular transporters capable to deliver various cargos. Herein, we report the synthesis of hydrophobic macrocycles composed of both amino acids and peptoid monomers. The cyclic tetramers and hexamers were assembled in a modular approach using solid as well as solution phase techniques. To monitor their intracellular localization, the macrocycles were attached to the fluorophore Rhodamine B. Most molecular transporters were efficiently internalized by HeLa cells and revealed a specific accumulation in mitochondria without the need for cationic charges. The data will serve as a starting point for the design of further cyclic peptoid-peptide hybrids presenting a new class of highly efficient, versatile molecular transporters.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 858
Author(s):  
Kyriaki-Marina Lyra ◽  
Archontia Kaminari ◽  
Katerina N. Panagiotaki ◽  
Konstantinos Spyrou ◽  
Sergios Papageorgiou ◽  
...  

An efficient doxorubicin (DOX) drug delivery system with specificity against tumor cells was developed, based on multi-walled carbon nanotubes (MWCNTs) functionalized with guanidinylated dendritic molecular transporters. Acid-treated MWCNTs (oxCNTs) interacted both electrostatically and through hydrogen bonding and van der Waals attraction forces with guanidinylated derivatives of 5000 and 25,000 Da molecular weight hyperbranched polyethyleneimine (GPEI5K and GPEI25K). Chemical characterization of these GPEI-functionalized oxCNTs revealed successful decoration with GPEIs all over the oxCNTs sidewalls, which, due to the presence of guanidinium groups, gave them aqueous compatibility and, thus, exceptional colloidal stability. These GPEI-functionalized CNTs were subsequently loaded with DOX for selective anticancer activity, yielding systems of high DOX loading, up to 99.5% encapsulation efficiency, while the DOX-loaded systems exhibited pH-triggered release and higher therapeutic efficacy compared to that of free DOX. Most importantly, the oxCNTs@GPEI5K-DOX system caused high and selective toxicity against cancer cells in a non-apoptotic, fast and catastrophic manner that cancer cells cannot recover from. Therefore, the oxCNTs@GPEI5K nanocarrier was found to be a potent and efficient nanoscale DOX delivery system, exhibiting high selectivity against cancerous cells, thus constituting a promising candidate for cancer therapy.


Author(s):  
Alessandro Volonterio ◽  
Kaivin Hadidi ◽  
Maria Cristina Bellucci ◽  
Sergio Dall'Angelo ◽  
Alasdair Leeson-Payne ◽  
...  

Guanidinoglycosides are a class of non-cytotoxic molecular transporters capable of delivering high molecular weight bioactive cargos into cells at low nanomolar concentrations. Efficient bioconjugation with guanidinoglycosides has been previously demonstrated...


2021 ◽  
Author(s):  
Hyun-Soo Kim ◽  
Yeongju Lee ◽  
Min Hyeon Shin ◽  
Hyun-Suk Lim

Here we describe the design, synthesis, and biological evaluation of cell-penetrating, amphipathic cyclic peptoids as a novel class of molecular transporters.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2685
Author(s):  
Diana M. Leite ◽  
Diana Matias ◽  
Giuseppe Battaglia

Within the brain, endothelial cells lining the blood vessels meticulously coordinate the transport of nutrients, energy metabolites and other macromolecules essential in maintaining an appropriate activity of the brain. While small molecules are pumped across specialised molecular transporters, large macromolecular cargos are shuttled from one side to the other through membrane-bound carriers formed by endocytosis on one side, trafficked to the other side and released by exocytosis. Such a process is collectively known as transcytosis. The brain endothelium is recognised to possess an intricate vesicular endosomal network that mediates the transcellular transport of cargos from blood-to-brain and brain-to-blood. However, mounting evidence suggests that brain endothelial cells (BECs) employ a more direct route via tubular carriers for a fast and efficient transport from the blood to the brain. Here, we compile the mechanism of transcytosis in BECs, in which we highlight intracellular trafficking mediated by tubulation, and emphasise the possible role in transcytosis of the Bin/Amphiphysin/Rvs (BAR) proteins and glycocalyx (GC)—a layer of sugars covering BECs, in transcytosis. Both BAR proteins and the GC are intrinsically associated with cell membranes and involved in the modulation and shaping of these membranes. Hence, we aim to summarise the machinery involved in transcytosis in BECs and highlight an uncovered role of BAR proteins and the GC at the brain endothelium.


Sign in / Sign up

Export Citation Format

Share Document