scholarly journals SEBS as an Effective Nucleating Agent for Polystyrene Foams

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3836
Author(s):  
Alberto Ballesteros ◽  
Ester Laguna-Gutiérrez ◽  
Miguel Ángel Rodríguez-Pérez

Different percentages of an elastomeric phase of styrene-ethylene-butylene-styrene (SEBS) were added to a polystyrene (PS) matrix to evaluate its nucleating effect in PS foams. It has been demonstrated that a minimum quantity of SEBS produces a high nucleation effect on the cellular materials that are produced. In particular, the results show that by adding 2% of SEBS, it is possible to reduce the cell size by 10 times while maintaining the density and open cell content of the foamed materials. The influence of this polymeric phase on the glass transition temperature (Tg) and the shear and extensional rheological properties has been studied to understand the foaming behavior. The results indicate a slight increase in the Tg and a decrease of the shear viscosity, extensional viscosity, and strain hardening coefficient as the percentage of SEBS increases. Consequently, an increase in the density and a deterioration of the cellular structure is detected for SEBS amounts higher than 3%.

2017 ◽  
Vol 36 (2) ◽  
pp. 75-96 ◽  
Author(s):  
Wei Liu ◽  
Peng Chen ◽  
Xiangdong Wang ◽  
Fuchun Wang ◽  
Yujiao Wu

The effect of a bio-based macromolecule, poly(butylene adipate-co-terephthalate) (PBAT), on the crystallization and foaming behavior of poly(lactic acid) (PLA) was evaluated. The crystallization kinetics results show that the addition of PBAT improved the crystallization of PLA by increasing the overall crystallinity and enhancing the crystal morphology of PLA. The massive crystallization zones may have prevented the escape of foaming gases to the surrounding area; the expansion ratio of the PLA foams increased from 4.87 to 10.94. Thus, a novel macromolecular crystallization nucleating agent for PLA was developed; the effect of the crystallization of PLA on its foaming behavior was also investigated. A high expansion ratio and finer cellular structure of PLA foam were obtained by optimizing the PBAT content.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3055
Author(s):  
Ismael Sánchez-Calderón ◽  
Victoria Bernardo ◽  
Mercedes Santiago-Calvo ◽  
Haneen Naji ◽  
Alberto Saiani ◽  
...  

In this work, the effects of thermoplastic polyurethane (TPU) chemistry and concentration on the cellular structure of nanocellular polymers based on poly(methyl-methacrylate) (PMMA) are presented. Three grades of TPU with different fractions of hard segments (HS) (60%, 70%, and 80%) have been synthesized by the prepolymer method. Nanocellular polymers based on PMMA have been produced by gas dissolution foaming using TPU as a nucleating agent in different contents (0.5 wt%, 2 wt%, and 5 wt%). TPU characterization shows that as the content of HS increases, the density, hardness, and molecular weight of the TPU are higher. PMMA/TPU cellular materials show a gradient cell size distribution from the edge of the sample towards the nanocellular core. In the core region, the addition of TPU has a strong nucleating effect in PMMA. Core structure depends on the HS content and the TPU content. As the HS or TPU content increases, the cell nucleation density increases, and the cell size is reduced. Then, the use of TPUs with different characteristics allows controlling the cellular structure. Nanocellular polymers have been obtained with a core relative density between 0.15 and 0.20 and cell sizes between 220 and 640 nm.


2017 ◽  
Vol 2017 ◽  
pp. 1-15
Author(s):  
Salah Al-Enezi

This paper examines the effect of high-pressure carbon dioxide on the foaming process in polystyrene near the glass transition temperature and the foaming was studied using cylindrical high-pressure view cell with two optical windows. This technique has potential applications in the shape foaming of polymers at lower temperatures, dye impregnation, and the foaming of polystyrene. Three sets of experiments were carried out at operating temperatures of 50, 70, and 100°C, each over a range of pressures from 24 to 120 bar. Foaming was not observed when the polymer was initially at conditions below Tg but was observed above Tg. The nucleation appeared to occur randomly leading to subsequent bubble growth from these sites, with maximum radius of 0.02–0.83 mm. Three models were applied on the foaming experimental data. Variable diffusivity and viscosity model (Model C) was applied to assess the experimental data with the WLF equation. The model shows very good agreement by using realistic parameter values. The expansion occurs by diffusion of a dissolved gas from the supersaturated polymer envelope into the bubble.


Author(s):  
Carolyn Conner Seepersad ◽  
Janet K. Allen ◽  
David L. McDowell ◽  
Farrokh Mistree

Prismatic cellular or honeycomb materials exhibit favorable properties for multifunctional applications such as ultra-light load bearing combined with active cooling. Since these properties are strongly dependent on the underlying cellular structure, design methods are needed for tailoring cellular topologies with customized multifunctional properties that may be unattainable with standard cell designs. Topology optimization methods are available for synthesizing the form of a cellular structure—including the size, shape, and connectivity of cell walls and the number, shape, and arrangement of cell openings—rather than specifying these features a priori. To date, the application of these methods for cellular materials design has been limited primarily to elastic and thermo-elastic properties, however, and limitations of standard topology optimization methods prevent direct application to many other phenomena such as conjugate heat transfer with internal convection. In this paper, we introduce a practical, two-stage, flexibility-based, multifunctional topology design approach for applications that require customized multifunctional properties. As part of the approach, robust topology design methods are used to design flexible cellular topology with customized structural properties. Dimensional and topological flexibility is embodied in the form of robust ranges of cell wall dimensions and robust permutations of a nominal cellular topology. The flexibility is used to improve the heat transfer characteristics of the design via addition/removal of cell walls and adjustment of cellular dimensions, respectively, without degrading structural performance. We apply the method to design stiff, actively cooled prismatic cellular materials for the combustor liners of next-generation gas turbine engines.


MRS Advances ◽  
2016 ◽  
Vol 1 (36) ◽  
pp. 2519-2524 ◽  
Author(s):  
Linqi Zhang ◽  
Sriharsha Karumuri ◽  
A. Kaan Kalkan

ABSTRACTThe present work demonstrates a novel technique for dispersing nanofillers in a thermoplastic polymer, where polymerization and dispersion of the nanofillers occur simultaneously via dynamic emulsion polycondensation at ambient temperature. The composite is manufactured in the form of a uniform powder, which can then be molded into desired shape by melting or sintering. The technique is demonstrated for Ag nanowire / Nylon 66 composites. In this demonstration, Ag nanowires are synthesized by the polyol process. Polyvinylprrolidone (PVP) is used to functionalize the Ag nanowires. Nanocomposites with varying Ag content are prepared and investigated. The nanowires are found to be monodispersed and hydrogen-bonded to the Nylon 66 matrix through PVP. Glass transition temperature of the composites decreases from 61 to 48 °C with Ag weight fraction increasing from 0 to 6.47%. The depression of the glass transition temperature is owed to the plasticizer effect as well as heterogeneous nucleation effect of the nanowires for polymerization leading to shorter chain length.


2018 ◽  
Vol 183 ◽  
pp. 01041
Author(s):  
Nicolas Jacques ◽  
Romain Barthélémy

A theoretical modelling is proposed to describe the shock response of foam materials. This model is based on micromechanical and energetic arguments, and takes into account the contribution of microscale inertia. Within this framework, an analytical expression of the Hugoniot stress-strain curve is proposed for elastic-plastic cellular materials. The predictions derived from the proposed model are in excellent agreement with experimental data for open-cell aluminium foams. The case of viscoplastic foams is also considered.


2018 ◽  
Vol 26 (2) ◽  
pp. 169-175
Author(s):  
Yaoqi Shi ◽  
Liang Wen ◽  
Zhong Xin

The crystallization activation energy (Δ E) of a polymer comprises the nucleation activation energy Δ F and the transport activation energy Δ E*. In this paper, the Δ E of poly (L-lactic acid) (PLLA) nucleated with nucleating agent p- tert-butylcalix[8]arene (tBC8) was calculated. The results showed that the Δ E of nucleated PLLA was 165.97 kJ/mol, which is higher than that of pure PLLA. The reason why Δ E of PLLA increased when incorporating nucleating agent was studied. The increment of glass transition temperature ( Tg) for nucleated PLLA revealed that the polymer chain mobility was restricted by tBC8, which was considered as the reason for the increase of Δ E*. Further, polyethylene glycol (PEG) was added to improve the chain mobility, thus eliminated the variation of the transport activation energy Δ E* caused by tBC8. Then the effect of the increment of crystallization temperature range on the increase of Δ F was also taken into consideration. It was concluded that both decreasing the mobility of chain segments and increasing the crystallization temperature range caused an increase of Δ E for PLLA/tBC8.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Carolyn Conner Seepersad ◽  
Janet K. Allen ◽  
David L. McDowell ◽  
Farrokh Mistree

Prismatic cellular or honeycomb materials exhibit favorable properties for multifunctional applications such as ultralight load bearing combined with active cooling. Since these properties are strongly dependent on the underlying cellular structure, design methods are needed for tailoring cellular topologies with customized multifunctional properties. Topology optimization methods are available for synthesizing the form of a cellular structure—including the size, shape, and connectivity of cell walls and openings—rather than specifying these features a priori. To date, the application of these methods for cellular materials design has been limited primarily to elastic and thermoelastic properties, and limitations of classic topology optimization methods prevent a direct application to many other phenomena such as conjugate heat transfer with internal convection. In this paper, a practical, two-stage topology design approach is introduced for applications that require customized multifunctional properties. In the first stage, robust topology design methods are used to design flexible cellular topology with customized structural properties. Dimensional and topological flexibility is embodied in the form of robust ranges of cell wall dimensions and robust permutations of a nominal cellular topology. In the second design stage, the flexibility is used to improve the heat transfer characteristics of the design via addition/removal of cell walls and adjustment of cellular dimensions without degrading structural performance. The method is applied to design stiff, actively cooled prismatic cellular materials for the combustor liners of next-generation gas turbine engines.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 106 ◽  
Author(s):  
Yanpei Fei ◽  
Wei Fang ◽  
Mingqiang Zhong ◽  
Jiangming Jin ◽  
Ping Fan ◽  
...  

Polymer foams are promising for sound absorption applications. In order to process an industrial product, a series of polystyrene (PS) composite foams were prepared by continuous extrusion foaming assisted by supercritical CO2. Because the cell size and cell density were the key to determine the sound absorption coefficient at normal incidence, the bio-resource lignin was employed for the first time to control the cellular structure on basis of hetero-nucleation effect. The sound absorption range of the PS/lignin composite foams was corresponding to the cellular structure and lignin content. As a result, the maximum sound absorption coefficient at normal incidence was higher than 0.90. For a comparison, multiwall carbon nanotube (MWCNT) and micro graphite (mGr) particles were also used as the nucleation agent during the foaming process, respectively, which were more effective on the hetero-nucleation effect. The mechanical property and thermal stability of various foams were measured as well. Lignin showed a fire retardant effect in PS composite foam.


Sign in / Sign up

Export Citation Format

Share Document