gonotrophic cycle
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 14)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 6 ◽  
pp. 204
Author(s):  
Behi Kouadio Fodjo ◽  
Alida Kropf ◽  
Marius Gonse Zoh ◽  
Christabelle Gba Sadia ◽  
Affoué France-Paraudie Kouadio ◽  
...  

Background: There is increasing evidence of insecticide resistance spreading among wild mosquito populations, which is widely believed to compromise vector control once it reaches a threshold that enables mosquitoes to survive exposure to long lasting treated bed-net (LLIN) or indoor residual spraying (IRS). However, very little is known about the long-term impact of insecticide resistance on malaria transmission, which makes the consequence of insecticide resistance spreading difficult to predict. Methods: To gain more clarity, we have assessed four life-history traits of a resistant Anopheles gambiae laboratory strain that was repeatedly exposed to a LLIN and compared with individuals issued from the same strain but exposed to an untreated bed-net. Results: The non-parametric Kruskal-Wallis test did not show any significant impact of gonotrophic cycle on the five traits. However, the Kolmogorov-Smirnov non-parametric test revealed a significant (i) drop in blood feeding mean rates (D = 0.800; P< 0.0001), (ii) increase in 24-hours post-exposure (D = 0.600; P< 0.001) and (iii) end of gonotrophic cycle mortality (D = 0.611; P <0.006), and (iv) drop in egg laying rate (D = 0.730, P< 0.0001) when mosquitoes were exposed. Surprisingly, there was rather an upward trend in the number of L3 larvae/female mosquito for the exposed group comparing to the unexposed one, although the difference was not significant (D = 0.417, P> 0.05). Conclusion: Our study shows that in a context of widespread of resistance to insecticides, current pyrethroid-based vector control tools can still confer protection against malaria.


2021 ◽  
Vol Volume 34 - 2020 - Special... ◽  
Author(s):  
Albert Kouchéré ◽  
Hamadjam Abboubakar ◽  
Irepran Damakoa

International audience The gonotrophic cycle of mosquitoes conditions the frequency of mosquito-human contacts. The knowledge of this important phenomenon in the mosquito life cycle is a fundamental element in the epidemiological analysis of a communicable disease such as mosquito-borne diseases.In this work, we analyze a deterministic model of the complete life cycle of mosquitoes which takes into account the principal phases of female mosquitoes' gonotrophic cycle, and the Sterile Insect technique combined with the use of insecticide as control measures to fight the proliferation of mosquitoes. We compute the corresponding mosquito reproductive number N ∗ and prove the global asymptotic stability of trivial equilibrium. We prove that the model admits two non-trivial equilibria whenever N^{∗} is greater than another threshold, N_c, which the total number of sterile mosquitoes depends on. Numerical simulations, using mosquito parameters of the Aedes species, are carried out to illustrate our analytical results and permit to show that the strategy which consists in combining the sterile insect technique with adulticides, when it is well done, effectively combats the proliferation of mosquitoes.


Author(s):  
Drew David Reinbold-Wasson ◽  
Michael Hay Reiskind

Abstract Container Aedes mosquitoes are the most important vectors of human arboviruses (i.e., dengue, chikungunya, Zika, or yellow fever). Invasive and native container Aedes spp. potentially utilize natural and artificial containers in specific environments for oviposition. Several container Aedes spp. display ‘skip-oviposition’ behavior, which describes the distribution of eggs among multiple containers during a single gonotrophic cycle. In this study, we compared individual skip-oviposition behavior using identical eight-cup testing arenas with three container Aedes species: Aedes aegypti (Linnaeus), Aedes albopictus (Skuse), and Aedes triseriatus (Say). We applied the index of dispersion, an aggregation statistic, to individual mosquitoes’ oviposition patterns to assess skip-oviposition behavior. Aedes aegypti and Ae. albopictus utilized more cups and distributed eggs more evenly among cups than Ae. triseriatus under nutritionally enriched oviposition media (oak leaf infusion) conditions. When presented with a nutritionally unenriched (tap water) oviposition media, both Ae. aegypti and Ae. albopictus increased egg spreading behavior. Aedes albopictus did not modify skip-oviposition behavior when reared and assessed under fall-like environmental conditions, which induce diapause egg production. This study indicates specific oviposition site conditions influence skip-oviposition behavior with ‘preferred’ sites receiving higher amounts of eggs from any given individual and ‘non-preferred’ sites receive a limited contribution of eggs. A further understanding of skip-oviposition behavior is needed to make the best use of autodissemination trap technology in which skip-ovipositing females spread a potent larvicide among oviposition sites within the environment.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sharon Rose Hill ◽  
Tanvi Taparia ◽  
Rickard Ignell

Abstract Background In the light of dengue being the fastest growing transmissible disease, there is a dire need to identify the mechanisms regulating the behaviour of the main vector Aedes aegypti. Disease transmission requires the female mosquito to acquire the pathogen from a blood meal during one gonotrophic cycle, and to pass it on in the next, and the capacity of the vector to maintain the disease relies on a sustained mosquito population. Results Using a comprehensive transcriptomic approach, we provide insight into the regulation of the odour-mediated host- and oviposition-seeking behaviours throughout the first gonotrophic cycle. We provide clear evidence that the age and state of the female affects antennal transcription differentially. Notably, the temporal- and state-dependent patterns of differential transcript abundance of chemosensory and neuromodulatory genes extends across families, and appears to be linked to concerted differential modulation by subsets of transcription factors. Conclusions By identifying these regulatory pathways, we provide a substrate for future studies targeting subsets of genes across disparate families involved in generating key vector behaviours, with the goal to develop novel vector control tools.


2020 ◽  
Vol 10 (5) ◽  
pp. 105-109
Author(s):  
O.A. Fiodorova ◽  
S.A. Kozlov ◽  
O.A. Fiodorova

Despite the fact that blood-sucking flies (Diptera: Simuliidae) are mass bloodsuckers in a number of regions of Siberia and Far East, their biology in Russia and in countries of far abroad is still little studied. The purpose of this work is to study the physiological age of female flies in the subzone of the southern taiga of Tyumen region. Physiological age of female flies was determined by the method of V.P. Polovodova and T.S. Detinova, which was initially developed for mosquitoes, with a modification for black gnats by the number of “yellow bodies” - extensions of egg tube-ducks. Studies on the physiological age of females of one species of blood-sucking flies (Diptera: Simuliidae) Byssodon maculatus Mg., found in the subzone of the southern taiga of the forest zone. The species are mass bloodsuckers. It completes mainly one gonotrophic cycle, however by the end of the season the number females having laid eggs two times reaches 20-30%. A large portion of the female population (10 -22%) fails to complete any gonotrophic cycle. Due to the cold times at the end of the summer season, there is a rejuvenation of the population due to the death of physiologically old females. Comparing changes in population and age composition of females allows to claim that the first two species have two and the last one - just one geniture during the season. Determination of the physiological age of the female or the number of gonotrophic cycles done by a female, and accordingly, number of blood suckings is of practical interest, not only a theoretical one, since it gives the possibility to evaluate the epidemiological situation in areas where flies are vectors of a number of infectious and invasionary diseases of thalaremia, onchocercosis, simulidotoxicosis. All this points to the relevance of the study of population density as vectors of infections in the territory of the Russian Federation. Unfortunately, it was not carried out extensively, and even some research is being done in the framework of narrow studies and only in some regions.


2020 ◽  
Vol 62 (4, jul-ago) ◽  
pp. 372
Author(s):  
Mauricio Casas-Martínez ◽  
Rodrigo Tamayo-Domínguez ◽  
J Guillermo Bond-Compeán ◽  
Julio C Rojas ◽  
Manuel Weber ◽  
...  

2020 ◽  
Author(s):  
Alida Kropf ◽  
Behi K Fodjo ◽  
Marius G Zoh ◽  
Chistabelle G Sadia ◽  
Affoué FP Kouadio ◽  
...  

Abstract Background : There is increasing evidence of insecticide resistance spreading among wild mosquito populations, which is widely believed to compromise vector control once it reaches a threshold that enables mosquitoes to survive exposure to long lasting treated bed-net (LLIN) or indoor residual spraying (IRS). However, very little is known about the long-term impact of insecticide resistance on malaria transmission, which makes the consequence of insecticide resistance spreading difficult to predict. Methods: To gain more clarity, we have assessed five life-history traits of a resistant Anopheles gambiae laboratory strain that was repeatedly exposed to a LLIN and compared with individuals issued from the same strain but exposed to an untreated bed-net. Results: The non-parametric Kruskal-Wallis test did not show any significant impact of gonotrophic cycle on the five traits. However, the Kolmogorov-Smirnov non-parametric test revealed a significant (i) drop in blood feeding mean rates (D = 0.800; P< 0.0001), (ii) increase in 24-hours post-exposure (D = 0.600; P< 0.001) and (iii) end of gonotrophic cycle mortality (D = 0.611; P <0.006), and (iv) drop in egg laying rate (D = 0.730, P< 0.0001) when mosquitoes were exposed. Surprisingly, there was rather an upward trend in the number of L3 larvae/female mosquito for the exposed group comparing to the unexposed one, although the difference was not significant (D = 0.417, P> 0.05). Conclusion: Our study shows that in a context of widespread of resistance to insecticides, current pyrethroid-based vector control tools can still confer protection against malaria.


Pathogens ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 366 ◽  
Author(s):  
Menchie Manuel ◽  
Dorothée Missé ◽  
Julien Pompon

While the Zika virus (ZIKV) 2014–2017 pandemic has subsided, there remains active transmission. Apart from horizontal transmission to humans, the main vector Aedes aegypti can transmit the virus vertically from mother to offspring. Large variation in vertical transmission (VT) efficiency between studies indicates the influence of parameters, which remain to be characterized. To determine the roles of extrinsic incubation time and gonotrophic cycle, we deployed an experimental design that quantifies ZIKV in individual progeny and larvae. We observed an early infection of ovaries that exponentially progressed. We quantified VT rate, filial infection rate, and viral load per infected larvae at 10 days post oral infection (d.p.i.) on the second gonotrophic cycle and at 17 d.p.i. on the second and third gonotrophic cycle. As compared to previous reports that studied pooled samples, we detected a relatively high VT efficiency from 1.79% at 10 d.p.i. and second gonotrophic cycle to 66% at 17 d.p.i. and second gonotrophic cycle. At 17 d.p.i., viral load largely varied and averaged around 800 genomic RNA (gRNA) copies. Longer incubation time and fewer gonotrophic cycles promoted VT. These results shed light on the mechanism of VT, how environmental conditions favor VT, and whether VT can maintain ZIKV circulation.


2020 ◽  
Author(s):  
Alida Kropf ◽  
Behi K Fodjo ◽  
Marius G Zoh ◽  
Chistabelle G Sadia ◽  
Affoué FP Kouadio ◽  
...  

Abstract Background : There is increasing evidence of insecticide resistance spreading among wild mosquito populations, which is widely believed to compromise vector control once it reaches a threshold that enables mosquitoes to survive exposure to long lasting treated bed-net (LLIN) or indoor residual spraying (IRS). However, very little is known about the long-term impact of insecticide resistance on malaria transmission, which makes the consequence of insecticide resistance spreading difficult to predict. Methods: To gain more clarity, we have assessed five life-history traits of a resistant Anopheles gambiae laboratory strain that was repeatedly exposed to a LLIN and compared with individuals issued from the same strain but exposed to an untreated bed-net. Results: The non-parametric Kruskal-Wallis test did not show any significant impact of gonotrophic cycle on the five traits. However, the Kolmogorov-Smirnov non-parametric test revealed a significant (i) drop in blood feeding mean rates (D = 0.800; P< 0.0001), (ii) increase in 24-hours post-exposure (D = 0.600; P< 0.001) and (iii) end of gonotrophic cycle mortality (D = 0.611; P <0.006), and (iv) drop in egg laying rate (D = 0.730, P< 0.0001) when mosquitoes were exposed. Surprisingly, there was rather an upward trend in the number of larvae/female mosquito for the exposed group comparing to the unexposed one, although the difference was not significant (D = 0.417, P> 0.05). Conclusion: Our study shows that in a context of widespread of resistance to insecticides, current pyrethroid-based vector control tools can still confer protection against malaria.


Sign in / Sign up

Export Citation Format

Share Document