Comparative Skip-Oviposition Behavior Among Container Breeding Aedes spp. Mosquitoes (Diptera: Culicidae)

Author(s):  
Drew David Reinbold-Wasson ◽  
Michael Hay Reiskind

Abstract Container Aedes mosquitoes are the most important vectors of human arboviruses (i.e., dengue, chikungunya, Zika, or yellow fever). Invasive and native container Aedes spp. potentially utilize natural and artificial containers in specific environments for oviposition. Several container Aedes spp. display ‘skip-oviposition’ behavior, which describes the distribution of eggs among multiple containers during a single gonotrophic cycle. In this study, we compared individual skip-oviposition behavior using identical eight-cup testing arenas with three container Aedes species: Aedes aegypti (Linnaeus), Aedes albopictus (Skuse), and Aedes triseriatus (Say). We applied the index of dispersion, an aggregation statistic, to individual mosquitoes’ oviposition patterns to assess skip-oviposition behavior. Aedes aegypti and Ae. albopictus utilized more cups and distributed eggs more evenly among cups than Ae. triseriatus under nutritionally enriched oviposition media (oak leaf infusion) conditions. When presented with a nutritionally unenriched (tap water) oviposition media, both Ae. aegypti and Ae. albopictus increased egg spreading behavior. Aedes albopictus did not modify skip-oviposition behavior when reared and assessed under fall-like environmental conditions, which induce diapause egg production. This study indicates specific oviposition site conditions influence skip-oviposition behavior with ‘preferred’ sites receiving higher amounts of eggs from any given individual and ‘non-preferred’ sites receive a limited contribution of eggs. A further understanding of skip-oviposition behavior is needed to make the best use of autodissemination trap technology in which skip-ovipositing females spread a potent larvicide among oviposition sites within the environment.

2020 ◽  
Vol 10 (1) ◽  
pp. 67-77
Author(s):  
Amos Watentena ◽  
Ikem Chris Okoye ◽  
Ikechukwu Eugene Onah ◽  
Onwude Cosmas Ogbonnaya ◽  
Emmanuel Ogudu

Mosquitoes of Aedes species are vectors of several arboviral diseases which continue to be a major public health problem in Nigeria. This study among other things, morphologically identified Aedes mosquitoes collected from Nsukka LGA and used an allele specific PCR amplification for discrimination of dengue vectors. Larval sampling, BG-sentinel traps and modified human landing catches were used for mosquito sampling in two selected autonomous communities of Nsukka LGA (Nsukka and Obimo). A total of 124 Aedes mosquitoes consisting of five (5) different species were collected from April to June, 2019 in a cross-sectional study that covered 126 households, under 76 distinct geographical coordinates. Larvae was mainly collected from plastic containers 73% (n=224), metallic containers 14% (n=43), earthen pots 9% (n=29) and used car tyres 3% (n=9), reared to adult stage 69.35% (n=86), and all mosquitoes were identified using standard morphological keys. Five (5) Aedes mosquito species were captured; Aedes aegypti 83(66.94%), Aedes albopictus 33(26.61%), Aedes simpsoni (4.48%), Aedes luteocephalus (≤1%) and Aedes vittatus (≤1%). Nsukka autonomous community had higher species diversity than Obimo. Allele specific amplification confirmed dengue vectors, Aedes aegypti and Aedes albopictus species on a 2% agarose gel. Since the most recent re-emergence of arboviral diseases is closely associated with Aedes species, findings of this study, therefore, give further evidence about the presence of potential arboviral vectors in Nigeria and describe the role of a simple PCR in discriminating some. Further entomological studies should integrate PCR assays in mosquito vector surveillance.


2014 ◽  
Vol 2 (3) ◽  
Author(s):  
Aprianto Jacob ◽  
Victor D. Pijoh ◽  
G. J. P. Wahongan

Abstract: In Indonesia there are two vectors are known, the main vector Aedes aegypti and Aedes albopictus as a potential vector, Aedes spp mosquito breeding varies but generally prefer clear water reservoirs. Eggs Aedes spp mosquitoes can hatch in the sewage, although not known survival and growth of larvae into pupae and adult mosquitoes. Objective: To determine the survival and growth of Aedes spp in various types of water breeding. Methods: Four types of breeding water taken directly from the settlement, and immediately used. Eggs Aedes spp laboratory strains incubated in water media. Larvae reared until the age of 4 days. A sample of 25 healthy larvae included six types of breeding water. The number of surviving larvae, pupae and adult mosquitoes be observed and counted every day for 15 days. Data security and growth of larvae processed manually in the form of percentages and graphs. Results: Aedes spp shown to survive in water dug wells (SGL), sewage water (sewer), as well as tap water. The presence of mosquitoes living in the sewer water can last up to 15 days with the same amount of mosquitoes from the first day until the last day. This phenomenon is different in the SGL and PAM water where mosquitoes can survive until day 15, although with a small percentage. Aedes spp proved unable to survive in wastewater soap. Conclusion: Water drains were left in place and clear become breeding places for Aedes spp good to note that its presence in the cleaning mosquito breeding. Keywords: The larvae of Aedes spp, life, death, pupa, adult mosquitoes, breeding water.     Abstrak: Di Indonesia dikenal ada dua vektor, vektor utama nyamuk  Aedes aegypti dan Aedes albopictus sebagaivektor potensial, perindukan nyamuk Aedes spp sangat bervariasi tetapi umumnya lebih menyukai tempat penampungan air jernih. Telur Aedes sppdapat menetas pada air comberan,meskipun belum diketahui ketahanan hidup dan pertumbuhan larva menjadi pupa dan nyamuk dewasa. Tujuan: mengetahui ketahanan hidup dan pertumbuhan nyamuk Aedes spp pada berbagai jenis air perindukan. Metode: Empat jenis air perindukan diambil secara langsung dari pemukiman penduduk dan langsung digunakan. Telur Aedes spp strain laboratorium ditetaskan pada media air bersih. Larva dipelihara hingga berumur 4 hari. Sampel sebanyak 25 ekor larva sehat dimasukkan ke enam jenis air perindukan. Jumlah larva yang bertahan hidup, menjadi pupa dan nyamuk dewasa diamati dan dihitung setiap hari selama 15 hari. Data ketahanan dan pertumbuhan larva diolah secara manual dalam bentuk persentase dan grafik. Hasil: Nyamuk Aedes spp terbukti dapat bertahan hidup pada air sumur gali (SGL), air comberan (got), serta air PAM.  Keberadaan nyamuk hidup pada air got  mampu  bertahan  sampai 15 hari dengan jumlah nyamuk yang sama dari hari pertama sampai hari terakhir. Fenomena ini berbeda pada air SGL dan PAM dimana nyamuk mampu bertahan sampai hari ke-15 meskipun dengan persentase kecil. Nyamuk Aedes spp terbukti tidak dapat bertahan hidup pada air limbah sabun. Simpulan:  Air got yang didiamkan dan jernih menjadi tempat perindukan yang baik bagi Aedes spp sehingga keberadaannya perlu diperhatikan dalam pembersihan sarang nyamuk. Kata kunci: Larva Aedes spp, hidup, mati, pupa, nyamuk dewasa, air perindukan.


2021 ◽  
Vol 05 (02) ◽  
pp. 52-61
Author(s):  
Thi Thanh Huong Le ◽  
◽  
Quynh Nguyen ◽  
Saenthavisouk Vanhnasack ◽  
Sinh Nam Vu

Objectives: The elimination of key breeding sites of dengue vector is applied worldwide to control the vector density under the critical epidemic threshold. This study aimed to identify key breeding sites of Aedes mosquitos and associated factors in Huaylau village, Pakse city, Champasack province in Laos in 2019. Methods: This was a cross-sectional study, combining of immature stage survey of Aedes mosquitoes in all water and discarded containers and the community’s knowledge and practices on the prevention of dengue fever in all 240 households in Huaylau village. Multivariate logistic regression was applied to identify factors associated with the absence of Aedes larvae and pupae in the village. Statistical significance was set at a p-value less than 0.05. Results: Among the 720 water and discarded containers surveyed, the study found 654 Aedes larvae and pupae; of which 94.6% were immature Aedes aegypti. Key breeding sites of Aedes aegypti included water jars (34.2%), plastic drums (30.7%), tanks < 500 litter (14.7%), and discarded containers (12.6%), while that of all Aedes albopictus was discarded containers. The community’s better practices on the prevention of dengue fever contributed to the increased odds of the absence of Aedes larvae ad pupae by 1.612 (95%CI: 1.218-2.134, p<0.01), and the cleanliness of the house were associated with the increased odds of 4.072 of the absent Aedes larvae and pupae in the participated households (95%CI: 1.589-10.434, p<0.01). Conclusions: Aedes aegypti mosquitoes in the Huaylau village laid their eggs in various breeding sites, including water containers and discarded containers while discarded containers were the only key breeding site of Aedes albopictus. Better practices on dengue prevention and better hygiene conditions of the houses contributed to the absence of Aedes larvae and pupae. Special attention should be paid to the clearance of all discarded containers and education of the community people to cover water containers in the village. Keywords: key breeding sites, Aedes, mosquito, pupae, larvae, Champasack province, Lao PDR


2020 ◽  
Vol 62 (4, jul-ago) ◽  
pp. 372
Author(s):  
Mauricio Casas-Martínez ◽  
Rodrigo Tamayo-Domínguez ◽  
J Guillermo Bond-Compeán ◽  
Julio C Rojas ◽  
Manuel Weber ◽  
...  

2020 ◽  
Author(s):  
Siyang Xia ◽  
Hany K. M. Dweck ◽  
Joel Lutomiah ◽  
Rosemary Sang ◽  
Carolyn S. McBride ◽  
...  

AbstractThe theory of ecological divergence provides a useful framework to understand the adaptation of many species to anthropogenic (‘domestic’) habitats. The mosquito Aedes aegypti, a global vector of several arboviral diseases, presents an excellent study system. Ae. aegypti originated in African forests, but the populations that invaded other continents have specialized in domestic habitats. In its African native range, the species can be found in both forest and domestic habitats like villages. A crucial behavioral change between mosquitoes living in different habitats is their oviposition choices. Forest Ae. aegypti lay eggs in natural water containers like tree holes, while their domestic counterparts heavily rely on artificial containers such as plastic buckets. These habitat-specific containers likely have different environmental conditions, which could drive the incipient divergent evolution of oviposition in African Ae. aegypti. To examine this hypothesis, we conducted field research in two African locations, La Lopé, Gabon and Rabai, Kenya, where Ae. aegypti live in both forests and nearby villages. We first characterized a series of environmental conditions of natural oviposition sites, including physical characteristics, microbial density, bacterial composition, and volatile profiles. Our data showed that in both locations, environmental conditions of oviposition sites did differ between habitats. To examine potential behavioral divergence, we then conducted field and laboratory oviposition choice experiments to compare the oviposition preference of forest and village mosquitoes. The field experiment suggested that forest mosquitoes readily accepted artificial containers. In laboratory oviposition assays, forest and village mosquito colonies did not show a differential preference towards several conditions that featured forest versus village oviposition sites. Collectively, there is little evidence from our study that environmental differences lead to strong and easily measurable divergence in oviposition behavior between Ae. aegypti that occupy nearby forest and domestic habitats within Africa, despite clear divergence between African and non-African Ae. aegypti.


2021 ◽  
Author(s):  
Roenick P. Olmo ◽  
Yaovi Mathias H. Todjro ◽  
Eric R. G. R. Aguiar ◽  
Joao Paulo P. de Almeida ◽  
Juliana N. Armache ◽  
...  

Aedes aegypti and Aedes albopictus are major mosquito vectors for arthropod-borne viruses (arboviruses) such as dengue (DENV) and Zika (ZIKV) viruses. Mosquitoes also carry insect-specific viruses (ISVs) that may affect the transmission of arboviruses. Here, we analyzed the global virome in urban Aedes mosquitoes and observed that two insect-specific viruses, Phasi Charoen-like virus (PCLV) and Humaita Tubiacanga virus (HTV), were the most prevalent in A. aegypti worldwide except for African cities, where transmission of arboviruses is low. Spatiotemporal analysis revealed that presence of HTV and PCLV led to a 200% increase in the chances of having DENV in wild mosquitoes. In the laboratory, we showed that HTV and PCLV prevented downregulation of histone H4, a previously unrecognized proviral host factor, and rendered mosquitoes more susceptible to DENV and ZIKV. Altogether, our data reveals a molecular basis for the regulation of A. aegypti vector competence by highly prevalent ISVs that may impact how we analyze the risk of arbovirus outbreaks.


2018 ◽  
Vol 34 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Robert L. Aldridge ◽  
Frances V. Golden ◽  
Seth C. Britch ◽  
Jessika Blersch ◽  
Kenneth J. Linthicum

ABSTRACT Preemptive treatment of dry habitats with an ultra-low volume (ULV) residual larvicide may be effective in an integrated vector management program to control populations of container-inhabiting Aedes mosquitoes, key vectors of Zika, dengue, and chikungunya viruses. We exposed dry, artificial containers placed in exposed and protected locations to Natular 2EC (spinosad) larvicide applied with a truck-mounted ULV sprayer in a simulated urban setting in North Florida, and later introduced water and Ae. aegypti or Ae. albopictus larvae to conduct bioassays. Up to 50% mortality was observed in bioassays, indicating further analysis of spinosad as a residual treatment application.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 828
Author(s):  
Borel Djiappi-Tchamen ◽  
Mariette Stella Nana-Ndjangwo ◽  
Konstantinos Mavridis ◽  
Abdou Talipouo ◽  
Elysée Nchoutpouen ◽  
...  

The emergence of insecticide resistance in Aedes mosquitoes could pose major challenges for arboviral-borne disease control. In this paper, insecticide susceptibility level and resistance mechanisms were assessed in Aedes aegypti (Linnaeus, 1762) and Aedes albopictus (Skuse, 1894) from urban settings of Cameroon. The F1 progeny of Aedes aegypti and Aedes albopictus collected in Douala, Yaoundé and Dschang from August to December 2020 was tested using WHO tube assays with four insecticides: deltamethrin 0.05%, permethrin 0.75%, DDT 4% and bendiocarb 0.1%. TaqMan, qPCR and RT-qPCR assays were used to detect kdr mutations and the expression profiles of eight detoxification genes. Aedes aegypti mosquitoes from Douala were found to be resistant to DDT, permethrin and deltamethrin. Three kdr mutations, F1534C, V1016G and V1016I were detected in Aedes aegypti populations from Douala and Dschang. The kdr allele F1534C was predominant (90%) in Aedes aegypti and was detected for the first time in Aedes albopictus (2.08%). P450s genes, Cyp9J28 (2.23–7.03 folds), Cyp9M6 (1.49–2.59 folds), Cyp9J32 (1.29–3.75 folds) and GSTD4 (1.34–55.3 folds) were found overexpressed in the Douala and Yaoundé Aedes aegypti populations. The emergence of insecticide resistance in Aedes aegypti and Aedes albopictus calls for alternative strategies towards the control and prevention of arboviral vector-borne diseases in Cameroon.


Sign in / Sign up

Export Citation Format

Share Document