scholarly journals Surface and optical properties of calcium carbonate paper

Author(s):  
I. I. Ismailov ◽  
Kh. A. Babakhanova ◽  
A. A. Sadriddinov ◽  
M. A. Babahanova ◽  
D. Sh. Saidova

The article investigates the surface and optical properties of calcium carbonate paper obtained at the UzbekChinese enterprise Fergana stone paper company (Uzbekistan), in order to identify the possibility of their use at printing enterprises for printing multicolor products using traditional printing methods. According to the results of a quantitative assessment of the surface quality by the indirect Beck method, we can say that paper sample 1 has a smoothness like coated paper (750–1500 s), paper samples 2 and 3 – like calendered paper, so that these paper samples can be recommended for prints with increased quality requirements. Smaller values of roughness Ra and small depressions, expressed by darkening in the topographic AFM images, characterized sufficient homogeneity and density of the structure. It was also revealed that the surface of the paper samples has a high ability to specularly reflect the incident light, since the percentage of surface reflection is similar to that of coated papers. Samples of paper have a whiteness of about 90 % and do not have a tint, since the difference between the maximum and minimum values of the reflection coefficients on a white stack is not more than 10 %. The tested paper samples can be recommended without restrictions for double-sided printing, since the opacity index is more than 92 %.

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Xiaowei Wang ◽  
Feng Liang ◽  
Degang Zhao ◽  
Zongshun Liu ◽  
Jianjun Zhu ◽  
...  

Abstract Three InGaN/GaN MQWs samples with varying GaN cap layer thickness were grown by metalorganic chemical vapor deposition (MOCVD) to investigate the optical properties. We found that a thicker cap layer is more effective in preventing the evaporation of the In composition in the InGaN quantum well layer. Furthermore, the quantum-confined Stark effect (QCSE) is enhanced with increasing the thickness of GaN cap layer. In addition, compared with the electroluminescence measurement results, we focus on the difference of localization states and defects in three samples induced by various cap thickness to explain the anomalies in room temperature photoluminescence measurements. We found that too thin GaN cap layer will exacerbates the inhomogeneity of localization states in InGaN QW layer, and too thick GaN cap layer will generate more defects in GaN cap layer.


2015 ◽  
Vol 48 (3) ◽  
pp. 836-843 ◽  
Author(s):  
Oindrila Mondal ◽  
Manisha Pal ◽  
Ripandeep Singh ◽  
Debasis Sen ◽  
Subhasish Mazumder ◽  
...  

The effect of dopant size (ionic radius) on the crystal growth, structure and optical properties of nanocrystalline calcium titanate, CaTiO3(CTO), have been studied using small-angle neutron scattering. X-ray diffraction, along with high-resolution transmission electron microscopy, confirms the growth of pure nanocrystalline CTO. Rietveld analysis reveals that the difference of ionic radii between dopant and host ions induces strain within the lattice, which significantly affects the lattice parameters. The induced strain, due to the difference of ionic radii, causes the shrinkage of the optical band gap, which is manifested by the redshift of the absorbance band. Mesoscopic structural analysis using scattering techniques demonstrates that the ionic radius of the dopant influences the agglomeration behaviour and particle size. A high-resolution transmission electron microscopy study reconfirms the formation of pure highly crystalline CTO nanoparticles.


1989 ◽  
Vol 79 (3) ◽  
pp. 842-859
Author(s):  
R. D. Borcherdt ◽  
G. Glassmoyer

Abstract Exact anelastic solutions incorporating inhomogeneous waves are used to model numerically S-I and P waves incident on the free surface of a low-loss anelastic half-space. Anelastic free-surface reflection coefficients are computed for the volumetric strain and displacement components of inhomogeneous wave fields. For the problem of an incident homogeneous S-I wave in Pierre shale, the largest strain and displacement amplitudes for the reflected P wave occur at angles of incidence for which the particle motion for the reflected inhomogeneous P wave is elliptical (minor/major axis = 0.6), the specific absorption (QP−1) is greater (300 per cent) and the velocity is less (25 per cent) than those for a corresponding homogeneous P wave, the direction of phase propagation is not parallel to the free surface, and the amplitude of the wave shows a significant increase with depth (6 per cent in one wavelength). Energy reflection coefficients computed for this low-loss anelastic model show that energy flow due to interaction of the incident and reflected waves reach maxima (30 per cent of the incident energy) near large but nongrazing angles of incidence. For the problem of an incident homogeneous P wave in Pierre shale, the inhomogeneity of the reflected S wave is shown not to contribute to significant variations in wave field characteristics over those that would be expected for a homogeneous wave.


2009 ◽  
Vol 3 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Yan-Ping Huang ◽  
Yong-Ping Zheng

Conventional ultrasound examination of the articular cartilage performed externally on the body surface around the joint has limited accuracy due to the inadequacy in frequency used. In contrast to this, minimally invasive arthroscopy-based ultrasound with adequately high frequency may be a better alternative to assess the cartilage. Up to date, no special ultrasound transducer for imaging the cartilage in arthroscopic use has been designed. In this study, we introduced the intravascular ultrasound (IVUS) for this purpose. An IVUS system with a catheter-based probe (Ø ≈ 1mm) was used to measure the thickness and surface acoustical reflection of the bovine patellar articular cartilage in vitro before and after degeneration induced by enzyme treatments. Similar measurement was performed using another high frequency ultrasound system (Vevo) with a probe of much larger size and the results were compared between the two systems. The thickness measured using IVUS was highly correlated (r = 0.985, p < 0.001) with that obtained by Vevo. Thickness and surface reflection amplitude measured using IVUS on the enzymatically digested articular cartilage showed changes similar to those obtained by Vevo, which were expectedly consistent with previous investigations. IVUS can be potentially used for the quantitative assessment of articular cartilage, with its ready-to-use arthroscopic feature.


1993 ◽  
Vol 17 (2) ◽  
pp. 157-160
Author(s):  
N. Kawai ◽  
Z. Hirano ◽  
E. Komuro ◽  
T. Namikawa ◽  
Y. Yamazaki

2022 ◽  
Author(s):  
Atefeh Fazel Najafabadi ◽  
Baptiste Auguié

The optical properties of nanoparticle clusters vary with the spatial arrangement of the constituent particles, but also the overall orientation of the cluster with respect to the incident light. This...


2015 ◽  
Vol 15 (9) ◽  
pp. 5007-5026 ◽  
Author(s):  
E. Dieudonné ◽  
P. Chazette ◽  
F. Marnas ◽  
J. Totems ◽  
X. Shang

Abstract. In June 2013, a ground-based mobile lidar performed the ~10 000 km ride from Paris to Ulan-Ude, near Lake Baikal, profiling for the first time aerosol optical properties all the way from western Europe to central Siberia. The instrument was equipped with N2-Raman and depolarization channels that enabled an optical speciation of aerosols in the low and middle troposphere. The extinction-to-backscatter ratio (also called lidar ratio or LR) and particle depolarization ratio (PDR) at 355 nm have been retrieved. The LR in the lower boundary layer (300–700 m) was found to be 63 ± 17 sr on average during the campaign with a distribution slightly skewed toward higher values that peaks between 50 and 55 sr. Although the difference is small, PDR values observed in Russian cities (>2%, except after rain) are systematically higher than the ones measured in Europe (<1%), which is probably an effect of the lifting of terrigenous aerosols by traffic on roads. Biomass burning layers from grassland or/and forest fires in southern Russia exhibit LR values ranging from 65 to 107 sr and from 3 to 4% for the PDR. During the route, desert dust aerosols originating from the Caspian and Aral seas regions were characterized for the first time, with a LR (PDR) of 43 ± 14 sr (23 ± 2%) for pure dust. The lidar observations also showed that this dust event extended over 2300 km and lasted for ~6 days. Measurements from the Moderate Resolution Imaging Spectrometer (MODIS) show that our results are comparable in terms of aerosol optical thickness (between 0.05 and 0.40 at 355 nm) with the mean aerosol load encountered throughout our route.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ryosuke Watanabe ◽  
Yohei Eguchi ◽  
Takuya Yamada ◽  
Yoji Saito

Antireflection coating (ARC) prepared by a wet process is beneficial for low cost fabrication of photovoltaic cells. In this study, we investigated optical properties and morphologies of spin-coated TiO2ARCs on alkaline textured single-crystalline silicon wafers. Reflectance spectra of the spin-coated ARCs on alkaline textured silicon wafers exhibit no interferences and low reflectance values in the entire visible range. We modeled the structures of the spin-coated films for ray tracing numerical calculation and compared numerically calculated reflectance spectra with the experimental results. This is the first report to clarify the novel optical properties experimentally and theoretically. Optical properties of the spin-coated ARCs without interference are due to the fractional nonuniformity of the thickness of the spin-coated ARCs that cancels out the interference of the incident light.


2017 ◽  
Vol 25 (6) ◽  
pp. 453-462 ◽  
Author(s):  
Wolfgang Wildner ◽  
Dietmar Drummer

In this paper, the optical and mechanical properties of injection-moulded plates (thickness: 1 mm) made of poly(methyl methacrylate) (PMMA) and glass particles as filler with a matching refractive index are investigated. Tests show that the orientation resulting from the injection moulding process greatly affects the tensile strength and elongation at break, whereas the elastic modulus merely depends on the filling degree, which is investigated up to 13 vol.%. In terms of the optical properties, the specimens’ haze depends on the difference in the refractive index between a glass and polymer. However, the absolute value of haze increases with increasing filling degree and decreasing particle size. Surface defects resulting from the injection moulding process were found to be the primary reason for this haze, even with identical RI between PMMA and glass.


Sign in / Sign up

Export Citation Format

Share Document