scholarly journals Study on Optimization of Operating Parameters of Contact Mechanical Seal Based on Orthogonal Test

2021 ◽  
Vol 2137 (1) ◽  
pp. 012043
Author(s):  
LuLing Dai

Abstract The working condition parameters of common contact mechanical seals are experimentally studied by orthogonal experimental design. The effects of working condition parameters on mechanical seal performance are compared by variance and range analysis, and the optimal sealing working condition is put forward. The results show that the spring specific pressure has a great influence on the leakage of mechanical seal, and the leakage decreases rapidly with the increase of spring specific pressure; With the increase of spring specific pressure, the friction power consumption increases. According to the test results, considering the requirements of mechanical seal performance and service life, the optimal spring specific pressure is 0.028 MPa under the condition of medium pressure ps =0.60 MPa and motor speed n =2960 r/min. At this time, the leakage is 6.120 ml/h and the friction power consumption is 0.648 kW.

2014 ◽  
Vol 670-671 ◽  
pp. 860-865
Author(s):  
Long Wei ◽  
Peng Gao Zhang ◽  
Gui Fang Fang

In order to research and master the effect of surface topography on average film thickness between the end faces for mechanical seals, average film thickness fractal model between the end faces for mechanical seal was established using fractal parameters charactering surface topography characteristics, based on contact fractal model of the end face for mechanical seal, and solving micro-void volume. Effect of surface topography fractal parameters on average film thickness between the end faces for B104a-70 mechanical seal was analyzed by theoretical calculation. The results showed that fractal dimension D and characteristic length scale G of the end face had a great influence on the average film thickness h0, and h0 decreased with the increased of D or decreased of G; h0 decreased rapidly with the increased of D or with the decreased of G when the end face was coarser, however, it decreased slowly with the increased of D or with the decreased of G when the end face was smoother. In normal working parameters and surface topography fractal parameters range, average film thickness between end faces was in the range of 0.27~1.7μm. Studying on the effect of the change of surface topography on average film thickness has an important significance on the predicting of operating characteristics of end faces during actual operating and the design of end faces for contact mechanical seal.


2021 ◽  
Author(s):  
Wei Zheng ◽  
Jianjun Sun ◽  
Chenbo Ma ◽  
Qiuping Yu

Abstract Based on the percolation theory, the critical porosity of zero-leakage at the wetting and non-wetting sealing interface working in liquid medium is first discussed. The influence of end-face frictional heat on end-face friction and wear is then investigated. The design criteria for the face contact pressure of mechanical seals with zero-leakage and long-life operation are established. Afterwards, the face contact pressure range of the mechanical seal working in conventional different liquid medium is calculated, and the influence of different working conditions speed, medium temperature and pressure on the face contact pressure range change is analyzed. Existing studies have shown that mechanical seals can achieve zero-leakage and long-life operation. As for the wettable sealing interface, the minimum face contact pressure, corresponding to the zero-leakage condition, is only related to the morphological parameters of the sealing interface, and has nothing to do with the sealing medium. Under the rotating and stationary rings physical parameters and given working conditions, the face contact pressure range of the sealing medium water and propane propylene is 0.477~1.132 MPa. The diesel sealing medium has a larger face contact pressure range than that of water and propane propylene, which can reach 0.477~2.183 MPa. The working condition speed, medium temperature and medium pressure have an influence on the face contact pressure range, while the influence of the working condition speed is the most significant.


2010 ◽  
Vol 36 ◽  
pp. 68-74
Author(s):  
Chuan Jun Liao ◽  
Shuang Fu Suo ◽  
Wei Feng Huang

Acoustic emission (AE) techniques are put forward to monitor rub-impacts between rotating rings and stationary rings of mechanical seals by this paper. By analyzing feature extraction methods of the typical rub-impact AE signal, the method combining of wavelet scalogram and power spectrum is found useful, and can used to attribute the feature information implicated in rub-impact AE signals of mechanical seal end faces. Both simulations and experimental research prove that the method is effective, and are used successfully to identify the typical features of different types of rub-impacts of mechanical seal end faces.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fangcheng Xu ◽  
Zeda Dong ◽  
Jianhua Chu ◽  
Haoming Wang ◽  
Yongliang Wang

Purpose Gas thrust foil bearings (GTFBs) are used to balance the axial load of engines. However, in some working conditions of large axial force, such as the use of single impeller air compressor, the load capacity of GTFBs is still insufficient. To solve this problem, the load capacity can be improved by increasing the stiffness of bump foil. The purpose of this paper is to explore a scheme to effectively improve the performance of thrust foil bearings. In the paper, the stiffness of bump foil is improved by increasing the thickness of bump foil and using double-layer bump foil. Design/methodology/approach The foil deformation of GTFBs supported by three different types of bump foils, the relationship between friction power consumption and external force and the difference of limited load capacity were measured by experimental method. Findings The variation of the foil deformation, bearing stiffness, friction power consumption with the external force at different speeds and limited load capacity are obtained. Based on experimental results, the selection scheme of bump foil thickness is obtained. Originality/value This paper provides a feasible method for the performance optimization of GTFBs.


Author(s):  
ZeDa Dong ◽  
Cheng Cheng ◽  
Fangcheng Xu

Abstract In this paper, the mathematical model of herringbone grooved aerodynamic foil bearings is established, and the finite difference method is used to obtain the discretized form of Reynolds equation. The static characteristics of bearings, such as film pressure, film temperature, are obtained by solving the Reynolds equation and energy equation. The bearing load capacity and friction power consumption are obtained by calculating the film thickness and film pressure distribution in the bearing gap. The influence of the bearing operational parameters, such as eccentricity and rotation speed, and the bearing structural parameters, such as groove width, groove depth ratio, groove number and helix angle, on the bearing load capacity and friction power consumption of bearings are analyzed. The methods of improving bearing load capacity and reducing friction power consumption are obtained. Simultaneously, by comparing the bearing load capacity and friction power consumption of herringbone grooved gas foil bearings and gas foil bearings (GFBs) without herringbone grooves, the influence of herringbone grooves on the bearing performance is obtained.


Author(s):  
Feng Wang ◽  
Linyi Gu ◽  
Bo Zhou ◽  
Ying Chen

As safe and effective underwater vehicle, underwater robot is considered to be an ideal tool for the investigation and exploitation in the large offshore area. There has been a growing interest to develop six-legged underwater walking robot for the researchers since the six-legged locomotion is more flexible and adaptable on the seafloor than other types of locomotion. The trajectory for the leg of the six-legged walking robot has a great influence on the locomotion quality and efficiency when the robot is a heavy one. The power consumed in the locomotion with different leg trajectories differs from each other greatly. Therefore, it is of great significance to study the trajectory of the leg. Of all the locomotion of the walking robot, crossing over obstacle is a typical one. Thus this paper mainly studies the trajectory generation for the leg of the six-legged walking robot over obstacle in the structured terrain. The robot has eighteen DOF and all the joints are hydraulically driven. In the current study, technical analysis is performed with the emphasis on the power consumption while crossing over obstacle. The analysis is conducted at various trajectories so as to compare the power consumed in different trajectories. Meanwhile, the study has also taken the smooth movement of the joint into consideration. The trajectory of the leg is theoretically analyzed and simulated. The kinematic simulation and the power consumed with different trajectories are both conducted in MATLAB. Simulation results have demonstrated the influence of trajectory on the power consumption of the robot while crossing over obstacle. The study has provided a theoretical way for the trajectory generation over obstacle for the six-legged walking robot.


2013 ◽  
Vol 455 ◽  
pp. 207-211
Author(s):  
Mutellip Ahmat ◽  
Zhi Wei Niu ◽  
Guzaiayi Abudoumijiti

The friction pair for bellows mechanical seal as a friction element is one of the key components for it. In this research, by based on the computational fluid dynamics (CFD) numerical theory, using the Fluent software, corresponding model and parameters, the fluid-film between the clearance of the sealing ring friction pair for the bellows mechanical seal under such the high-temperature, high-pressure, high-speed as complex working conditions is numerically simulated, the relationship between the carrying-capacity of the fluid-film and the temperature, the viscosity of the fluid-film, the relationship between friction torque of the fluid-film and the speed, viscosity of the fluid-film, the influence factor of leakage are obtained. The researching results provide the scientific basis for the optimization designing of the high parameter bellows mechanical seals.


2013 ◽  
Vol 871 ◽  
pp. 290-295
Author(s):  
Yan Lei Luo ◽  
Cong Guo Xu ◽  
Qiu Yan Zhang

Hydraulic excavator slewing system is an important component of the excavator and its core-component is the rotary motor. When the rotary hydraulic system starts, stops, and reciprocating works, dynamic characteristic of rotary motor anti-reverse valve has a great influence for working condition of the whole system. Through researching working principle of hydraulic system anti-reverse valve, establish dynamic mathematical model of anti-reverse valve, analyze dynamic response of the model, and get the theoretical foundation of the impact of anti-reverse valve middle chamber throttle opening on hydraulic system. According to the actual working condition of the excavator slewing hydraulic system, establish the system AMESim simulation model, take different parameters of the anti-reverse valve throttle opening, conduct simulation and analysis of the anti-reverse valve characteristics, and validate throttle opening has a great influence on dynamic characteristics of the hydraulic system.


2010 ◽  
Vol 37-38 ◽  
pp. 819-822 ◽  
Author(s):  
Jian Feng Zhou ◽  
Bo Qin Gu ◽  
Chun Lei Shao

The flat end face mechanical seals are widely used in shaft sealing at moderate rotational speed. The thermal deformation of the rotating and stationary rings initiated by friction heat of fluid film should be primarily considered in the design of mechanical seal. In consideration of the coupling effect among the thermal deformation of sealing rings, the fluid flow in the gap composed by end faces of sealing rings and the heat transfer from fluid film to sealing rings, the optimum design method for flat end face mechanical seal is established. The end faces are fabricated to form a divergent gap at the inner side of the sealing rings, and a convergent gap will occur at the outer side and a parallel gap will be obtained at where the original divergent gap is due to the thermal deformation. After optimization, the leakage rate can be reduced while the bearing force of fluid film is still large enough to keep the fluid lubrication of the end faces.


Author(s):  
Toshiyuki Yoshioka ◽  
Takashi Motani ◽  
Atsushi Fujimaru ◽  
Koji Yamada ◽  
Kunihiro Hasegawa ◽  
...  

Generic Safety Issue 23 (GSI-23) by the U.S. Nuclear Regulatory Commission (NRC) was identified in 1980 as a result of staff concerns about reactor coolant pump (RCP) seal failure during Station Blackout (SBO), that is, seal degradation leading to a significant loss of reactor coolant in pressurized-water reactor (PWR) plants. Resolutions of GSI-23 have been considered at PWR plants. In 2000, NRC decided to close GSI-23 and issue Regulatory Issue Summary00–002 (RIS 00–002)[1], based on considerations such as; for example, the improvement of RCP seal performance[2], and the reduction of the risk of RCP seal failure in certain plants by the addition of alternate power sources. After the closure of GSI-23, some licensees were planning to make other associated improvements under their individual plant program. In Japan, the RCP seal was showed that leakage rate was low under SBO testing conditions[3] in licensing safety reviews conducted according to new nuclear regulatory standards after the nuclear accident at the Fukushima Daiichi Nuclear Power Plant. On the other hand, a boiling-water reactor (BWR) is not included in GSI-23 because operating experience indicates that seal failures in BWRs result in smaller leak rates than seal failures in PWRs and, BWRs have the reactor coolant injection capability under SBO conditions, such as the reactor core isolation cooling (RCIC) and the high-pressure coolant injection (HPCI) system. In addition, for the particular BWR-2 type plants that do not have emergency makeup systems, the pump mechanical seal was tested under SBO conditions and successfully showed minimal leakage[4]. However, for the BWR-5 type plants which have the reactor coolant injection capability, such as the RCIC and HPCI systems, the pump seal had not been tested. In Japan, after the nuclear accident at the Fukushima Daiichi Nuclear Power Plant, licensing safety reviews of BWRs and PWRs are being conducted according to new nuclear regulatory standards. We took this opportunity to test the leak rate from Primary Loop Recirculation (PLR) pump mechanical seals under SBO condition. The peak of leak rate was approximately 0.6ton/h (2.6gpm) during the 24 hours of SBO testing condition. Despite damage of O-rings in the mechanical seal by heated water which were ovserbed at post-inspection test, a very low leak rate was realized because the leakage path after passing through the damaged parts of the O-rings was limited by the other restricting pathway in the mechanical seal. This seal leakage was very low, compared with the reactor coolant makeup capability of the RCIC system and the reactor coolant release capability from main steam safety relief valve (SRV). Therefore, we reconfirmed that the result of this leak rate does not affect the safety evaluation for the reactor. It is shown in this paper that the leak rate from PLR pump mechanical seals is low under SBO condition by our demonstration test.


Sign in / Sign up

Export Citation Format

Share Document