scholarly journals Silver Nanoparticulate Matter Reinforced Conducting Polymer Polyaniline Nanocomposite: Sol-Gel Processing, Schottky-Diode Making and Electronic Worthiness Testing

Author(s):  
A Kanni Raj

Abstract: Polyaniline nanoparticles is synthesized by chemical oxidation of aniline by copper sulphate. Chemical reduction of silver nitrate by sodium citrate yileds silver nanoparticles. Both aforesaid nanomaterials are mixded with polyvinyl alcohol to get nanocomposite gel. Nanoparticles are characterized by ultraviolet-visible absorption spectroscopy. Schottky diode is made by applying nanocomposite with copper wire on one side of aluminium foil and on other side attaching copper wire for another electrical contact. Current-voltage electrical characterization is analyzed by making simple circuit encompassing polyaniline/silver nanocomposite diode. Keywords: Nanoelecttronics, Nanoparticles, Polyaniline, Nanocomposite, Schottky-diode

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2671
Author(s):  
Bárbara R. Gomes ◽  
Rita B. Figueira ◽  
Susana P. G. Costa ◽  
M. Manuela M. Raposo ◽  
Carlos J. R. Silva

This manuscript describes the synthesis and characterization of five new organic–inorganic hybrid (OIH) sol-gel materials that were obtained from a functionalized siloxane 3-glycidoxypropyltrimethoxysilane (GPTMS) by the reaction with the new Jeffamine®, namely three different diamines, i.e., EDR-148, RFD-270, and THF-170, a secondary diamine, i.e., SD-2001, and a triamine, i.e., T-403. The OIH sol-gel materials were characterized by UV-visible absorption spectrophotometry, steady-state photoluminescence spectroscopy, and electrochemical impedance spectroscopy. The reported OIH sol-gel materials showed that, with the exception of the samples prepared with Jeffamine® SD-2001, the transmittance values ranged between 61% and 79%. Regarding the capacitance data, the values reported changed between 0.008 and 0.013 nF cm−2. Due to their optical and electrical properties these new OIH materials show promising properties for applications as support films in an optical sensor area such as fiber sensor devices. Studies to assess the chemical stability of the OIH materials in contact with cement pastes after 7, 14, and 28 days were also performed. The samples prepared with THF–170 and GPTMS, when compared to the samples prepared with RFD-270 and T-403, exhibited improved behavior in the cement paste (alkaline environment), showing promising properties for application as support film in optical fiber sensors in the civil engineering field.


2020 ◽  
Vol 183 ◽  
pp. 05002 ◽  
Author(s):  
Hamza Belkhanchi ◽  
Younes Ziat ◽  
Maryama Hammi ◽  
Charaf Laghlimi ◽  
Abdelaziz Moutcine ◽  
...  

In this study, we have investigated the surface analysis and optoelectronic properties on the synthesis of N-CNT/TiO2 composites thin films, using sol gel method for a dye synthetized solar cell (DSSC) which is found to be simple and economical route. The titanium dioxide based solar cells are an exciting photovoltaic candidate; they are promising for the realization of large area devices. That can be synthetized by room temperature solution processing, with high photoactive performance. In the present work, we stated comparable efficiencies by directing our investigation on obtaining Sol Gel thin films based on N-CNT/TiO2, by dispersing nitrogen (N) doped carbon nanotubes (N-CNTs) powders in titanium tetraisopropoxyde (TTIP). The samples were assessed in terms of optical properties, using UV—visible absorption spectroscopic techniques. After careful analysis of the results, we have concluded that the mentioned route is good and more efficient in terms of optoelectronic properties. The gap of “the neat” 0.00w% N-CNT/TiO2 is of 3eV, which is in a good agreement with similar gap of semiconductors. The incorporated “w%NCNTs” led to diminishing the Eg with increasing N-CNTs amount. These consequences are very encouraging for optoelectronic field.


Cerâmica ◽  
2019 ◽  
Vol 65 (374) ◽  
pp. 274-281 ◽  
Author(s):  
S. S. Satpute ◽  
S. R. Wadgane ◽  
S. R. Kadam ◽  
D. R. Mane ◽  
R. H. Kadam

Abstract Y3+ substituted strontium hexaferrites having chemical composition SrYxFe12-xO19 (x= 0.0, 0.5, 1.0, 1.5) were successfully synthesized by sol-gel auto-combustion method. The structural and morphological studies of prepared samples were investigated by using X-ray diffraction technique, energy dispersive X-ray spectroscopy, field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy. The X-ray diffraction pattern confirmed the single-phase hexagonal structure of yttrium substituted strontium ferrite and the lattice parameters a and c increased with the substitution of Y3+ ions. The crystallite size also varied with x content from 60 to 80 nm. The morphology was studied by FE-SEM, and the grain size of nanoparticles ranged from 44 to 130 nm. The magnetic properties were investigated by using vibrating sample magnetometer. The value of saturation magnetization decreased from 49.60 to 35.40 emu/g. The dielectric constant decreased non-linearly whereas the electrical dc resistivity increased with the yttrium concentration in strontium hexaferrite.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Kangqiang Huang ◽  
Li Chen ◽  
Jianwen Xiong ◽  
Meixiang Liao

The Fe-N co-doped TiO2nanocomposites were synthesized by a sol-gel method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS). Then the photocatalytic inactivation of Fe-N-doped TiO2on leukemia tumors was investigated by using Cell Counting Kit-8 (CCK-8) assay. Additionally, the ultrastructural morphology and apoptotic percentage of treated cells were also studied. The experimental results showed that the growth of leukemic HL60 cells was significantly inhibited in groups treated with TiO2nanoparticles and the photocatalytic activity of Fe-N-TiO2was significantly higher than that of Fe-TiO2and N-TiO2, indicating that the photocatalytic efficiency could be effectively enhanced by the modification of Fe-N. Furthermore, when 2 wt% Fe-N-TiO2nanocomposites at a final concentration of 200 μg/mL were used, the inactivation efficiency of 78.5% was achieved after 30-minute light therapy.


2013 ◽  
Vol 415 ◽  
pp. 77-81 ◽  
Author(s):  
Muhammad Tahir ◽  
Muhammad Hassan Sayyad ◽  
Fazal Wahab ◽  
Dil Nawaz Khan ◽  
Fakhra Aziz

2016 ◽  
Vol 34 (1) ◽  
pp. 164-168
Author(s):  
Raz Muhammad ◽  
Muhammad Uzair ◽  
M. Javid Iqbal ◽  
M. Jawad Khan ◽  
Yaseen Iqbal ◽  
...  

AbstractCa2Nd4Ti6O20, a layered perov skite structured material was synthesized via a chemical (citrate sol-gel) route for the first time using nitrates and alkoxide precursors. Phase analysis of a sample sintered at 1625 °C revealed the formation of an orthorhombic (Pbn21) symmetry. The microstructure of the sample after sintering comprised rod-shaped grains of a size of 1.5 to 6.5µm. The room temperature dielectric constant of the sintered sample was 38 at 100 kHz. The remnant polarization (Pr) and the coercive field (Ec) were about 400 μC/cm2 and 8.4 kV/cm, respectively. Impedance spectroscopy revealed that the capacitance (13.7 pF) and activation energy (1.39 eV) of the grain boundary was greater than the capacitance (5.7 pF) and activation energy (1.13 eV) of the grain.


2012 ◽  
Vol 64 (1) ◽  
pp. 219-223 ◽  
Author(s):  
M. Cavas ◽  
R. K. Gupta ◽  
A. A. Al-Ghamdi ◽  
Omar A. Al-Hartomy ◽  
Farid El-Tantawy ◽  
...  

2021 ◽  
Vol 21 (5) ◽  
pp. 3165-3170
Author(s):  
Ashish Kumar ◽  
Arathy Varghese ◽  
Shriniwas Yadav ◽  
Mahanth Prasad ◽  
Vijay Janyani ◽  
...  

The paper reports development of graphene/ZnO heterojunction Schottky diode structure and its structural and electrical characterization. Graphene is grown on copper substrate using chemical vapor deposition (CVD) and transferred on flexible substrate (indium Tin Oxide coated PET). The grown thin layer is characterized using scanning electron microscopy and Raman spectroscopy which confirm uniformity and high-quality graphene layer. The sputtered ZnO is deposited and characterized which confirms c-axis (002) orientation and uniform growth of ZnO film. Silver (Ag) as a top electrode has been deposited and I–V measurement has been done. The effect of operating temperature (300 K to 425 K) on I–V characteristics of the fabricated structure has been measured experimentally. The other diode parameters such as ideality factor and effective barrier height have been derived. The reliability of the heterojunction synthesized is proved by the diode ideality factor of 1.03 attained at 425 K. The excellent C–V characteristics (capacitance of 48pF) of the device prove that the device is an excellent candidate for application as supercapacitors. The fabricated structure can be utilized as an ultraviolet photodetector, solar cell, energy storage devices, etc.


2021 ◽  
Vol 13 (3) ◽  
pp. 371-380
Author(s):  
Yongjun Wu ◽  
Nina Xie ◽  
Lu Yu

A novel Ag–Si–TiO2 composite was prepared via sol–gel method for removing residual formaldehyde in shiitake mushroom. The structure of Ag–Si–TiO2 composite was characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. Ultraviolet-visible absorption spectroscopy (UV-Vis) and N2 adsorption-desorption tests showed that Ag and Si co-doped decreased the band gap, the Brunauer-Emmett-Teller (BET) specific surface area of the samples increased and the recombination probability of electron-hole pairs (e--h+) reduced. Effect on removal rate of formaldehyde with different Ag-Si co-doped content, formaldehyde concentration and solution pH were investigated, and the results showed that 6.0 wt%Ag-3.0 wt%Si-TiO2 samples had an optimum catalytic performance, and the degradation efficiency reached 96.6% after 40 W 365 nm UV lamp irradiation for 360 min. The kinetics of formaldehyde degradation by Ag–Si–TiO2 composite photocatalyst could be described by Langmuir-Hinshelwood first-order kinetic model.


Sign in / Sign up

Export Citation Format

Share Document