scholarly journals Dynamic queuosine changes in tRNA couple nutrient levels to codon choice in Trypanosoma brucei

2021 ◽  
Author(s):  
Sameer Dixit ◽  
Alan C Kessler ◽  
Jeremy Henderson ◽  
Xiaobei Pan ◽  
Ruoxia Zhao ◽  
...  

Abstract Every type of nucleic acid in cells undergoes programmed chemical post-transcriptional modification. Generally, modification enzymes use substrates derived from intracellular metabolism, one exception is queuine (q)/queuosine (Q), which eukaryotes obtain from their environment; made by bacteria and ultimately taken into eukaryotic cells via currently unknown transport systems. Here, we use a combination of molecular, cell biology and biophysical approaches to show that in Trypanosoma brucei tRNA Q levels change dynamically in response to concentration variations of a sub-set of amino acids in the growth media. Most significant were variations in tyrosine, which at low levels lead to increased Q content for all the natural tRNAs substrates of tRNA-guanine transglycosylase (TGT). Such increase results from longer nuclear dwell time aided by retrograde transport following cytoplasmic splicing. In turn high tyrosine levels lead to rapid decrease in Q content. Importantly, the dynamic changes in Q content of tRNAs have negligible effects on global translation or growth rate but, at least, in the case of tRNATyr it affected codon choice. These observations have implications for the occurrence of other tunable modifications important for ‘normal’ growth, while connecting the intracellular localization of modification enzymes, metabolites and tRNAs to codon selection and implicitly translational output.

1999 ◽  
Vol 112 (21) ◽  
pp. 3769-3777 ◽  
Author(s):  
P. Bastin ◽  
T.J. Pullen ◽  
T. Sherwin ◽  
K. Gull

The paraflagellar rod (PFR) of Trypanosoma brucei is a large, complex, intraflagellar structure that represents an excellent system in which to study flagellum assembly. Molecular ablation of one of its major constituents, the PFRA protein, in the snl-1 mutant causes considerable alteration of the PFR structure, leading to cell paralysis. Mutant trypanosomes sedimented to the bottom of the flask rather than staying in suspension but divided at a rate close to that of wild-type cells. This phenotype was complemented by transformation of snl-1 with a plasmid overexpressing an epitope-tagged copy of the PFRA gene. In the snl-1 mutant, other PFR proteins such as the second major constituent, PFRC, accumulated at the distal tip of the growing flagellum, forming a large dilation or ‘blob’. This was not assembled as filaments and was removed by detergent-extraction. Axonemal growth and structure was unmodified in the snl-1 mutant and the blob was present only at the tip of the new flagellum. Strikingly, the blob of unassembled material was shifted towards the base of the flagellum after cell division and was not detectable when the daughter cell started to produce a new flagellum in the next cell cycle. The dynamics of blob formation and regression are likely indicators of anterograde and retrograde transport systems operating in the flagellum. In this respect, the accumulation of unassembled PFR precursors in the flagellum shows interesting similarities with axonemal mutants in other systems, illustrating transport of components of a flagellar structure during both flagellum assembly and maintenance. Observation of PFR components indicate that these are likely to be regulated and modulated throughout the cell cycle.


2020 ◽  
Vol 26 ◽  
Author(s):  
Aline Araujo Zuma ◽  
Emile dos Santos Barrias ◽  
Wanderley de Souza

Abstract:: The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information with Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; the glycosome and its role in the metabolism of the cell; the acidocalcisome, describing its morphology, biochemistry, and functional role; the cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.


1992 ◽  
Vol 70 (12) ◽  
pp. 1347-1355 ◽  
Author(s):  
H. S. Roychowdhury ◽  
T. J. MacAlister ◽  
J. W. Costerton ◽  
M. Kapoor

The most abundant heat-shock protein of Neurospora crassa is a multimeric glycoprotein of 80-kilodaltons (i.e., HSP80), induced strongly by hyperthermia and at a lower level by sodium arsenite, ethanol, and carbon source depletion. Immunoelectron microscopy, using indirect immunogold labelling demonstrated that HSP80 was undetectable in mycelium cultured at the normal growth temperature of 28 °C, but it appeared rapidly following the commencement of heat-shock treatment at 48 °C. HSP80, visualized by the gold label, was observed almost exclusively in the cytoplasm, exhibiting a uniform distribution. Association of this protein with cellular membranes and (or) targeting to a particular subcellular compartment or organelle was not apparent.Key words: 80-kilodalton heat-shock protein, Neurospora, intracellular location, immunoelectron microscopy.


Author(s):  
Kirsten J. Meyer ◽  
Theresa A. Shapiro

Trypanosoma brucei subspecies cause African sleeping sickness in humans, an infection that is commonly fatal if not treated, and available therapies are limited. Previous studies have shown that heat shock protein 90 (Hsp90) inhibitors have potent and vivid activity against bloodstream form trypanosomes. Hsp90s are phylogenetically conserved and essential catalysts that function at the crux of cell biology, where they ensure the proper folding of proteins and their assembly into multicomponent complexes. To assess the specificity of Hsp90 inhibitors and further define the role of Hsp90s in African trypanosomes, we used RNAi to knockdown cytosolic and mitochondrial Hsp90s (HSP83 and HSP84, respectively). Loss of either protein led to cell death but the phenotypes were distinctly different. Depletion of cytosolic HSP83 closely mimicked the consequences of chemically depleting Hsp90 activity with inhibitor 17-AAG. In these cells cytokinesis was severely disrupted and segregation of the kinetoplast (the massive mitochondrial DNA structure unique to this family of eukaryotic pathogens) was impaired, leading to cells with abnormal kDNA structures. Quite differently, knockdown of mitochondrial HSP84 did not impair cytokinesis but halted the initiation of new kDNA synthesis, generating cells without kDNA. These findings highlight the central role for Hsp90s in chaperoning cell cycle regulators in trypanosomes, reveal their unique function in kinetoplast replication, and reinforce their specificity and value as drug targets.


2008 ◽  
Vol 294 (1) ◽  
pp. H532-H540 ◽  
Author(s):  
Obaida R. Rana ◽  
Carsten Zobel ◽  
Esra Saygili ◽  
Klara Brixius ◽  
Felix Gramley ◽  
...  

The biomechanical environment to which cells are exposed is important to their normal growth, development, interaction, and function. Accordingly, there has been much interest in studying the role of biomechanical forces in cell biology and pathophysiology. This has led to the introduction and even commercialization of many experimental devices. Many of the early devices were limited by the heterogeneity of deformation of cells cultivated in different locations of the culture plate membranes and were also attached with complicated technical/electronic efforts resulting in a restriction of the reproducibility of these devices. The objective of this study was to design and build a simple device to allow the application of dose-dependent homogeneous equibiaxial static stretch to cells cultured on flexible silicone membranes to investigate biological and biomedical questions. In addition, cultured neonatal rat atrial cardiomyocytes were stretched with the proposed device with different strain gradients. For the first time with this study we could demonstrate that stretch up to 21% caused dose-dependent changes in biological markers such as the calcineurin activity, modulatory calcineurin-interacting protein-1, voltage-gated potassium channel isoform 4.2, and voltage-gated K+ channel-interacting proteins-2 gene expression and transient outward potassium current densities but not the protein-to-DNA ratio and atrial natriuretic peptide mRNA. With both markers mentioned last, dose-dependent stretch alterations could only be achieved with stretch up to 13%. The simple and low-cost device presented here might be applied to a wide range of experimental settings in different fields of research.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2226
Author(s):  
Jorge Xool-Tamayo ◽  
Yahaira Tamayo-Ordoñez ◽  
Miriam Monforte-González ◽  
José Armando Muñoz-Sánchez ◽  
Felipe Vázquez-Flota

The synthesis of the benzylisoquinoline alkaloids, sanguinarine and berberine, was monitored in Argemone mexicana L. (Papaveracea) throughout the early stages of its hypocotyl and seedling development. Sanguinarine was detected in the cotyledons right after hypocotyl emergence, and it increased continuously until the apical hook unbent, prior to the cotyledonary leaves unfolding, when it abruptly fell. In the cotyledonary leaves, it also remained at low levels. Throughout development, berberine accumulation required the formation of cotyledonary leaves, whereas it was quickly detected in the hypocotyl from the time it emerged. Interestingly, the alkaloids detected in the cotyledons could have been imported from hypocotyls, because no transcriptional activity was detected in there. However, after turning into cotyledonary leaves, important levels of gene expression were noted. Taken together, these results suggest that the patterns of alkaloid tissue distribution are established from very early development, and might require transport systems.


1973 ◽  
Vol 80 (3) ◽  
pp. 353-361 ◽  
Author(s):  
M. A. Scaife ◽  
R. Smith

SummaryA dynamic model is presented in which the problem of predicting P response is broken down into various components, such as:(a) Weight and P content of emerging seedling.(b) Normal growth curve of the fully nourished plant.(c) A ‘deficiency-tolerance’ factor relating depression of relative growth rate to plant P concentration.(d) An ‘affinity’ term relating sink concentration to P status of plant.(e) A perirhizal resistance term for diffusive transport to roots.(f) Capacity and intensity of P supply from the soil. Mass flow supply via the transpiration stream is also included.By changing parameter values one may attempt to simulate the effect of any of these factors on the shape of the P response curve and any other part of the system throughout crop life. At present the model over-estimates growth at low levels of P supply, but predicted plant P concentrations agree reasonably well with observed data.


1991 ◽  
Vol 69 (5) ◽  
pp. 936-944 ◽  
Author(s):  
George S. Espie ◽  
Anthony G. Miller ◽  
Ramani A. Kandasamy ◽  
David T. Canvin

Cyanobacteria possess systems for the active transport of both CO2 and HCO3−. While the active CO2 transport system seems to be present in cells grown on all levels of CO2 or dissolved inorganic carbon, the bicarbonate transport systems are only present in cells grown on low levels of CO2 or dissolved inorganic carbon (air levels or lower). Active bicarbonate transport can be shown to occur when the rate of photosynthesis exceeds that which could be sustained by the production of CO2 from the dehydration of bicarbonate or when CO2 transport is inhibited with carbon oxysulfide or hydrogen sulfide. Two systems for active bicarbonate transport have been identified: one is dependent on the presence of millimolar concentrations of sodium, and the other is independent of the sodium requirement. Cells grown with air bubbling normally possess the first whereas cells grown in standing culture normally possess the second. The sodium-dependent bicarbonate transport can be inhibited by omitting sodium from the reaction medium or competitively with lithium when sodium is present. Monensin and amiloride also inhibit sodium-dependent bicarbonate transport. It does not appear to be inhibited by ethoxyzolamide. The inhibition of sodium-independent bicarbonate transport is not yet established. Bicarbonate transport appears to have no effect on CO2 transport and CO2 transport appears to have no effect on bicarbonate transport. Hence, the transport systems seems to be independent. Although a number of mechanisms have been proposed for bicarbonate transport, the experimental data are not sufficient to clearly distinguish between them. Key words: cyanobacteria, active CO2 transport, active HCO3− transport, photosynthesis, sodium.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Rebecca J. Hall ◽  
Lindsey A. Flanagan ◽  
Michael J. Bottery ◽  
Vicki Springthorpe ◽  
Stephen Thorpe ◽  
...  

ABSTRACTThe tsetse fly is the insect vector for theTrypanosoma bruceiparasite, the causative agent of human African trypanosomiasis. The colonization and spread of the trypanosome correlate positively with the presence of a secondary symbiotic bacterium,Sodalis glossinidius. The metabolic requirements and interactions of the bacterium with its host are poorly understood, and herein we describe a metabolic model ofS. glossinidiusmetabolism. The model enabled the design and experimental verification of a defined medium that supportsS. glossinidiusgrowthex vivo. This has been used subsequently to analyzein vitroaspects ofS. glossinidiusmetabolism, revealing multiple unique adaptations of the symbiont to its environment. Continued dependence on a sugar, and the importance of the chitin monomerN-acetyl-d-glucosamine as a carbon and energy source, suggests adaptation to host-derived molecules. Adaptation to the amino acid-rich blood diet is revealed by a strong dependence onl-glutamate as a source of carbon and nitrogen and by the ability to rescue a predictedl-arginine auxotrophy. Finally, the selective loss of thiamine biosynthesis, a vitamin provided to the host by the primary symbiontWigglesworthia glossinidia, reveals an intersymbiont dependence. The reductive evolution ofS. glossinidiusto exploit environmentally derived metabolites has resulted in multiple weaknesses in the metabolic network. These weaknesses may become targets for reagents that inhibitS. glossinidiusgrowth and aid the reduction of trypanosomal transmission.IMPORTANCEHuman African trypanosomiasis is caused by theTrypanosoma bruceiparasite. The tsetse fly vector is of interest for its potential to prevent disease spread, as it is essential forT. bruceilife cycle progression and transmission. The tsetse’s mutualistic endosymbiontSodalis glossinidiushas a link to trypanosome establishment, providing a disease control target. Here, we describe a new, experimentally verified model ofS. glossinidiusmetabolism. This model has enabled the development of a defined growth medium that was used successfully to test aspects ofS. glossinidiusmetabolism. We presentS. glossinidiusas uniquely adapted to life in the tsetse, through its reliance on the blood diet and host-derived sugars. Additionally,S. glossinidiushas adapted to the tsetse’s obligate symbiontWigglesworthia glossinidiaby scavenging a vitamin it produces for the insect. This work highlights the use of metabolic modeling to design defined growth media for symbiotic bacteria and may provide novel inhibitory targets to block trypanosome transmission.


Sign in / Sign up

Export Citation Format

Share Document