wild boar population
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 51)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Vol 25 (8) ◽  
pp. 822-830
Author(s):  
E. A. Snegin ◽  
V. M. Makeeva ◽  
A. P. Kaledin ◽  
A. M. Ostapchuk ◽  
I. D. Alazneli ◽  
...  

The results of studies of the genetic structure of the Central European wild boar (Sus scrofa scrofa) population and four breeds of domestic pigs (Duroc, Yorkshire, Large White and Landrace) bred in the Central Black Earth region of Russia are presented in this work. Based on 12 microsatellite loci, a significant ( p <0.05) decrease in the level of genetic variability in bred breeds was shown. The expected heterozygosity and Shannon index were as follows: in the wild boar, Ho = 0.763 ± 0.026, I = 1.717 ± 0.091; in the Duroc breed, Ho = 0.569 ± 0.068, I = 1.191 ± 0.157; in the Landrace, Ho = 0.618 ± 0.062, I = 1.201 ± 0.147; in the Large White, Ho = 0.680 ± 0.029, I = 1.362 ± 0.074; and in the Yorkshire, Ho = 0.642 ± 0.065, I = 1.287 ± 0.156. The results of checking genotypic Hardy–Weinberg equilibrium based on the G-test of maximum likelihood demonstrated that the overwhelming majority of loci in the wild boar population were in the state of said equilibrium. By contrast, in pig breed populations, some loci demonstrated a significant deviation from the indicated equilibrium. In addition, the Yorkshire, Large White, and Landrace populations had loci, for which the hypothesis of neutrality was reliably rejected based on the results of the Ewens–Watterson test. The revealed private alleles, characteristic of the wild boar and breeds, can later be used to identify them. The ordination of the centroids of different herds in the space of the first two principal coordinates based on the matrix of pairwise estimates of Nei’s genetic distances showed that the most distant populations are the Duroc and Boar breeds, and the most genetically close are the Yorkshire and Landrace breeds. The closest to the wild boar population was the Large White breed. The assessment of the effective size, carried out using the method based on the linkage disequilibrium and the molecular coancestry method, showed that in all studied groups, including the wild boar population, the effective size was less than 100 individuals. The low effective size of the wild boar population (Ne = 21.8, Neb = 4.0) is probably caused by the death and shooting of animals due to Pestis africana suum.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ryota Matsuyama ◽  
Takehisa Yamamoto ◽  
Yoko Hayama ◽  
Ryosuke Omori

Understanding the morbidity and lethality of diseases is necessary to evaluate the effectiveness of countermeasure against the epidemics (e.g., vaccination). To estimate them, detailed data on host population dynamics are required; however, estimating the population size for wildlife is often difficult. We aimed to elucidate the morbidity and lethality of classical swine fever (CSF) currently highly prevalent in the wild boar population in Japan. To this end, we estimated lethality rate, recovery rate, and case fatality ratio (CFR) of CSF without detailed data on the population estimates of wild boar. A mathematical model was constructed to describe the CSF dynamics and population dynamics of wild boar. We fitted the model to the (i) results of the reverse transcription polymerase chain reaction (RT-PCR) test for the CSFV gene and the (ii) results of the enzyme-linked immunosorbent assay (ELISA) test for the antibody against CSFV in sampled wild boar. In the 280 wild boar sampled from September 2018 to March 2019 in the major CSF-affected area in Japan, the lethality rate and recovery rate of CSF per week were estimated as 0.165 (95% confidence interval: 0.081–0.250) and 0.004 (0–0.009), respectively. While the estimate of lethality rate of CSF was similar with the estimates in previous studies, the recovery rate was lower than those reported previously. CFR was estimated as 0.959 (0.904–0.981) using our estimate of recovery rate. This study is the first to estimate lethality rate of CSF from the dynamics of CSF epidemics in the wild boar population. Since the value of CFR is sensitive to the value of recovery rate, the accuracy in the estimate of recovery rate is a key for the accurate estimation of CFR. A long-term transmission experiment of moderately virulent strains may lead to more accurate estimation of the recovery rate and CFR of CSF.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Loreta Griciuvienė ◽  
Žygimantas Janeliūnas ◽  
Vaclovas Jurgelevičius ◽  
Algimantas Paulauskas

Abstract Background Wild boar (Sus scrofa) is a widely distributed ungulate whose success can be attributed to a variety of ecological features. The genetic variation and population structure of Lithuania’s wild boar population have not yet been thoroughly studied. The purposes of this study were to investigate the genetic diversity of S. scrofa and assess the effects of habitat fragmentation on the population structure of wild boar in Lithuania. A total of 96 S. scrofa individuals collected from different regions of Lithuania were genotyped using fifteen microsatellite loci. Results The microsatellite analysis of the wild boars indicated high levels of genetic diversity within the population. Microsatellite markers showed evidence of a single panmictic wild boar population in Lithuania according to STRUCTURE’s highest average likelihood, which was K = 1. This was supported by pairwise Fst values and AMOVA, which indicated no differentiation between the four sampling areas. The results of the Mantel test revealed a weak isolation by distance and geographic diversity gradients that persisted between locations. Motorway fencing and heavy traffic were not an effective barrier to wild boar movement. Conclusions There was limited evidence of population genetic structure among the wild boar, supporting the presence of a single population across the study area and indicating that there may be no barriers hindering wild boar dispersal across the landscape. The widespread wild boar population in Lithuania, the high level of genetic variation observed within subpopulations, and the low level of variation identified between subpopulations suggest migration and gene flow between locations. The results of this study should provide valuable information in future for understanding and comparing the detailed structure of wild boar population in Lithuania following the outbreak of African swine fever.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3215
Author(s):  
Maria Grazia Amoroso ◽  
Francesco Serra ◽  
Claudia Esposito ◽  
Nicola D’Alessio ◽  
Gianmarco Ferrara ◽  
...  

In recent years, porcine circovirus (PCV) infection has been documented as an important and emerging health concern for livestock and wildlife worldwide. The purpose of the present study was to assess the molecular prevalence of PCV-2 and PCV-3 and to clarify the epidemiological role of wild boars in the circulation of this virus in Campania, Southern Italy. For this purpose, samples from several organs were collected during the hunting season 2017–2018 from 148 wild boars in the Campania region. Quantitative real-time PCR was used for the detection and quantification of PCV-2 and PCV-3 genomes. The combined prevalence of PCV-2 and PCV-3 was 74.32% in the wild boars tested. The proportions of wild boars positive for PCV-2 or PCV-3, or coinfected, were 47.30%, 49.32%, and 22.30%, respectively. No link was detected between PCV positivity and location, but gender was a risk factor for the disease (female; p < 0.0001; OR 0.29). Furthermore, our study provides a snapshot of PCV-2 and PCV-3 circulation in wild boars in the Campania region: our findings can help us to better understand the role of wildlife in PCV circulation.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2121
Author(s):  
Katja Schulz ◽  
Jana Schulz ◽  
Christoph Staubach ◽  
Sandra Blome ◽  
Imbi Nurmoja ◽  
...  

African swine fever (ASF) emerged in Estonia in 2014. From February 2019 to August 2020, no pigs or wild boar tested positive for ASF virus (ASFV), only ASFV-specific antibodies could be detected in shot wild boar. However, ASF recently re-emerged in wild boar. We tested three hypotheses that might explain the current situation: (i) ASFV may have been present throughout, but at a prevalence below the detection limit; (ii) seropositive wild boar may have remained infectious (i.e., virus-carriers) and kept the epidemic going; or (iii) ASF was gone for 1.5 years, but was recently re-introduced. Using Estonian surveillance data, the sensitivity of the surveillance system and the confidence in freedom from ASF were estimated. Furthermore, the detection probability was determined and cluster analyses were performed to investigate the role of serological positive wild boar. The results suggest that the surveillance system was not able to detect virus circulation at a design prevalence below 1%. With respect to the confidence in freedom from ASF, the results indicate that circulating virus should have been detected over time, if the prevalence was ≥2%. However, the decreasing wild boar population density and ongoing surveillance activities made ASFV circulation at a low prevalence unlikely. Cluster analyses provided no evidence for a significant accumulation of serologically positive wild boar in temporal connection to the re-emergence of ASFV. Further targeted research, such as long-term experimental studies and molecular epidemiology, is necessary to improve our knowledge on the epidemiology of ASF and to control the disease more effectively.


2021 ◽  
Author(s):  
Bogusław Bobek ◽  
Jakub Furtek ◽  
Marta Wojciuch-Płoskonka

AbstractThe spread of the African swine fever through wild boar population has caused major losses in the pig industry. Therefore, to decrease the population density of wild boar in Poland, the culling of these animals has been dramatically increased. However, the effect of depopulation is unknown because there are no methods that could be used throughout the country to estimate the number of wild boar. Thus, during two hunting seasons an attempt was made to estimate the number of wild boar using data from collective hunts. The forested area of 21 hunting districts (351.5 km2) was divided into five sampling inventory blocks (SIBs), which were used for the statistical analysis of the population density, the harvest rate and results of collective hunts. The average population density obtained by a driving census amounted to 8.19 ± 1.12 and 10.09 ± 1.06 (x̅ ± SE), animals/km2, which indicates that 2879 and 3547 wild boar were living in the study area in 2012/2013 and 2013/2014 seasons respectively. The number of wild boars bagged per one hunting plot was adopted as the harvest success index (HBI). In SIBs the HBI value fluctuated in the range of 0.55 to 1.87 individuals/hunting plot and the population density ranged from 6.46 to 12.18 wild boars/km2. The non-linear regression showed a positive relationship between the HBI index and the population density. The discussion covers the possibility of using collective hunts to estimate the number of wild boar in Poland and in the European Union.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1219
Author(s):  
Maciej Piotr Frant ◽  
Anna Gal-Cisoń ◽  
Łukasz Bocian ◽  
Anna Ziętek-Barszcz ◽  
Krzysztof Niemczuk ◽  
...  

African swine fever (ASF) is a fatal hemorrhagic disease of wild boar and domestic pigs which has been present in Poland since 2014. By 2020, the ASF virus (ASFV) spread across Central, Eastern and Western Europe (including Germany), and Asian countries (including China, Vietnam, and South Korea). The national ASF eradication and prevention program includes continuous passive (wild boar found dead and road-killed wild boar) and active (hunted wild boar) surveillance. The main goal of this study was to analyze the dynamic of the spread of ASF in the wild boar population across the territory of Poland in 2020. In that year in Poland, in total 6191 ASF-positive wild boar were declared. Most of them were confirmed in a group of animals found dead. The conducted statistical analysis indicates that the highest chance of obtaining an ASF-positive result in wild boar was during the winter months, from January to March, and in December 2020. Despite the biosecurity measures implemented by holdings of domestic pigs, the disease also occurred in 109 pig farms. The role of ASF surveillance in the wild boar population is crucial to apply more effective and tailored measures of disease control and eradication. The most essential measures to maintain sustainable production of domestic pigs in Poland include effective management of the wild boar population, along with strict implementation of biosecurity measures by domestic pig producers.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2658
Author(s):  
Oliver Keuling ◽  
Egbert Strauß ◽  
Ursula Siebert

High wild boar population densities lead to demands for a population reduction to avoid crop damages or epidemic diseases. Along with biological studies, a better understanding of the human influence on wildlife and on wildlife management is important. We conducted inquiries on hunting methods and on hunters’ attitudes in the Federal State of Lower Saxony, Germany, to better understand hunting strategies and the influence on increasing wild boar population, as well as to underpin game management concepts. Single hunt, especially at bait, is still the most widely used method for hunting wild boar. The proportion of drive hunts within the hunting bag is increasing. The proportions of hunting methods vary regionally due to wild boar densities, geographical features (vegetation, terrain, etc.) and hunters’ practices. Hunters increased the proportion of conjoint hunts on wild boar. Baiting remains an important hunting method in wild boar management and the proportion of drive hunts should be fostered. Private hunting is important for wild boar management, although it is just insufficient. Additionally, administrative wildlife managers are recommended for the near future as coordinators of wild boar management, and as such, could manage hunting, the incorporation of regional conditions and investigating hunters’ attitudes and abilities.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 738
Author(s):  
Grzegorz Woźniakowski ◽  
Zygmunt Pejsak ◽  
Artur Jabłoński

African swine fever (ASF) in Poland has been a major concern for pig production for the last seven years. The main constrains in ASF eradication in Poland are due to the high density of wild boar in ASF-affected areas of the country. Other factors, responsible for long-distance ASF spread to new regions of the country, are mainly related to human-mediated activity and lack of awareness of the potential disease threat to pig production. In the case of pig holdings, the only effective measure of ASF prevention is strict implementation of biosecurity rules. Despite many efforts to implement these measures, the disease occurred in a number of voivodeships, poviats and counties of Poland, primarily in eastern Poland; however, starting from 2019, also in the western part of the country. Further recommendations to eradicate ASF in Poland or at least to minimize the economic loss caused by ASF in pig production include effective wild boar population management strategies along with the implementation of strict biosecurity measures. The observations from the last seven years of ASF epizootic in Poland clearly indicate that the disease could not have been effectively controlled in wild boar population and could only be restricted in domestic pig population following severe biosecurity rules. As for ASF spread control in wild boar population, the measures applied in other EU countries include active wild boar carcass search and disposal along with sanitary and reduction hunting. These measures have also been shown non-effective. The only solution for future sustainable pig production in Poland seems to be strict collaboration between pig producers, veterinary inspection, and hunting associations.


Sign in / Sign up

Export Citation Format

Share Document