franz cells
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 10)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Vol 11 (22) ◽  
pp. 11022
Author(s):  
Natália Andrýsková ◽  
Paul Sourivong ◽  
Melánia Babincová ◽  
Mária Šimaljaková

Electrospun polycaprolactone nanofibers with embedded magnetic nanoparticles were developed for use in the topical delivery of antipsoriatic drugs. To test a hydrophobic drug, a tazarotene has been used, which is an efficient retinoid derivative. Such a smart hyperthermia nanofiber system with self-generated heat from the incorporated magnetic nanoparticles induced drug release in response to on–off switching of alternating magnetic fields for the delivery of tazarotene through the skin, as quantified using Franz cells. This highly efficient external field-controllable system with minimal skin irritation could create a new avenue for the topical therapy of psoriasis.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1181
Author(s):  
Angela Punzo ◽  
Emanuele Porru ◽  
Alessia Silla ◽  
Patrizia Simoni ◽  
Paola Galletti ◽  
...  

Food waste is a global problem due to its environmental and economic impact, so there is great demand for the exploitation of new functional applications. The winemaking process leads to an incomplete extraction of high-value compounds, leaving the pomace still rich in polyphenols. This study was aimed at optimising and validating sustainable routes toward the extraction and further valorisation of these polyphenols, particularly for cosmeceutical applications. New formulations based on red grape pomace polyphenols and natural deep eutectic solvents (NaDESs) were here investigated, namely betaine combined with citric acid (BET-CA), urea (BET-U) and ethylene glycol (BET-EG), in which DESs were used both as extracting and carrying agents for polyphenols. The flavonoid profile determined by HPLC-MS/MS analysis showed similar malvidin content (51–56 μg mL−1) in the DES combinations, while BET-CA gave the best permeation performance in Franz cells, so it was further investigated in 3D human keratinocytes (HaCat spheroids) injured with the pro-oxidant agent menadione. BET-CA treatment showed good intracellular antioxidant activity (IC50 0.15 ± 0.02 μg mL−1 in malvidin content) and significantly decreased (p < 0.001) the release of the pro-inflammatory cytokine IL-8, improving cell viability. Thus, BET-CA formulation is worthy of investigation for potential use as a cosmetic ingredient to reduce oxidative stress and inflammation, which are causes of skin aging.


2021 ◽  
pp. 113420
Author(s):  
Van Chinh Hoang ◽  
Atefeh Shafaat ◽  
Skaidre Jankovskaja ◽  
Vincent G. Gomes ◽  
Tautgirdas Ruzgas

Author(s):  
YOUSAF KHAN ◽  
SYED UMER JAN ◽  
RAHMAN GUL

Objective: The aim of study was to formulate and evaluate Mefenamic acid ointment by the addition of penetration enhancer’s clove oil. Methods: 1%, 2% and 3% formulations of Mefenamic acid ointment formulated as per B. P, by melting hard paraffin 4.75g at 60 °C initially and to this 4.75 g wool fatwas incorporated, followed by addition of soft paraffin 80.75g and then adding Cetostearyl alcohol 4.75g and 1,2 and 3 ml clove oil by continuous stirring later on ointment being cooled at room temperature. These formulations were checked for consistency, Spreadability, homogeneity, PH, viscosity, skin irritation, drug content, UV absorbance, Differential scanning calorimetry (DSC) and XRD (X. ray diffraction) studies. In vitro pattern via using Franz cells besides with the use of dialysis cellulose membrane was done. Results: All the synthesized formulations illustrated fine physicochemical characteristics. SEM and XRD Studies expressed that there were no physicochemical incompatibilities among active ingredient (Mefenamic acid salt) and additives combined as drug permeation enhancers (clove oil).3% formulation showed maximum released 65.199%. Conclusion: In the present study, it was noted that clove oil can enhance the permeation of Mefenamic acid topical ointment.


2020 ◽  
Vol 187 (12) ◽  
Author(s):  
Skaidre Jankovskaja ◽  
Anaïs Labrousse ◽  
Léa Prévaud ◽  
Bo Holmqvist ◽  
Anders Brinte ◽  
...  

AbstractElevated amounts of reactive oxygen species (ROS) including hydrogen peroxide (H2O2) are observed in the epidermis in different skin disorders. Thus, epidermal sensing of H2O2 should be useful to monitor the progression of skin pathologies. We have evaluated epidermal sensing of H2O2 in vitro, by visualising H2O2 permeation through the skin. Skin membranes were mounted in Franz cells, and a suspension of Prussian white microparticles was deposited on the stratum corneum face of the skin. Upon H2O2 permeation, Prussian white was oxidised to Prussian blue, resulting in a pattern of blue dots. Comparison of skin surface images with the dot patterns revealed that about 74% of the blue dots were associated with hair shafts. The degree of the Prussian white to Prussian blue conversion strongly correlated with the reciprocal resistance of the skin membranes. Together, the results demonstrate that hair follicles are the major pathways of H2O2 transdermal penetration. The study recommends that the development of H2O2 monitoring on skin should aim for pathway-specific epidermal sensing, allowing micrometre resolution to detect and quantify this ROS biomarker at hair follicles.Graphical abstract


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1060
Author(s):  
Guillaume Le Guyader ◽  
Bernard Do ◽  
Victoire Vieillard ◽  
Karine Andrieux ◽  
Muriel Paul

Rapamycin has been used topically to treat facial angiofibromas associated with tuberous sclerosis for more than a decade. In the absence of a commercial form, a large number of formulations have been clinically tested. However, given the great heterogeneity of these studies, particularly with regard to the response criteria, it was difficult to know the impact and thus to compare the relevance of the formulations used. The objective of this work was therefore to evaluate the link between the diffusion of rapamycin and the physico-chemical characteristics of these different formulations on Strat-M® membranes as well as on human skin using Franz cells. Our results underline the importance of the type of vehicle used (hydrogel > cream > lipophilic ointment), the soluble state of rapamycin and its concentration close to saturation to ensure maximum thermodynamic activity. Thus, this is the first time that a comparative study of the different rapamycin formulations identified in the literature for the management of facial angiofibromas has been carried out using a pharmaceutical and biopharmaceutical approach. It highlights the important parameters to be considered in the development and optimization of topical rapamycin formulations with regard to cutaneous absorption for clinical efficacy.


Author(s):  
SANDAL KHAN ◽  
SYED UMER JAN ◽  
RAHMAN GUL ◽  
MIR ABDUL QADIR ◽  
KIFAYAT ULLAH SHAH

Objective: Present study was carried to formulate and evaluate the transdermal ointment containing the metformin HCl active ingredient and to assess their Physicochemical studies. Methods: Metformin HCl ointment was prepared with various thymol oil concentrations. Ointments were assessed with different characterizations; Physical appearance, viscosity, pH, drug content, Consistency, homogeneity, consistency. Differential scanning calorimetry analysis, XRD studies. It was used in vitro via using Franz cells along with the use of two membranes i.e. Nylon and cellulose membrane. Results: SEM and XRD studies showed that there were no physical and chemical interactions between excipients and drug. All the formulations showed good physicochemical characteristics. The formulation showed different releases. It was observed that nylon had better release properties as compared to cellulose. Conclusion: In the study conducted here, it was observed that Nylon membrane showed better discriminating power to compare among the formulation. This indicates that it has gotten prime importance to watch the effect of the membrane upon the release pattern of the various formulations. In order to improve the formulation, we can use in vitro diffusion cell experiments of transdermal drug delivery.


2020 ◽  
Vol 42 (4) ◽  
pp. 415-419
Author(s):  
B. C. Sil ◽  
R. G. Belgrave ◽  
M. P. Alvarez ◽  
L. Luo ◽  
M. Cristofoli ◽  
...  
Keyword(s):  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 682 ◽  
Author(s):  
Giulia Vanti ◽  
Daniele Bani ◽  
Maria Cristina Salvatici ◽  
Maria Camilla Bergonzi ◽  
Anna Rita Bilia

Escin is a natural saponin, clinically used for the anti-edematous and anti-inflammatory effects. The aim of the study was to explore the possibility of converting escin into vesicle bilayer-forming component. The hyaluronidase inhibition activity of escin was evaluated after its formulation in escinosomes. Berberine chloride, a natural quaternary isoquinoline alkaloid isolated from several medicinal plants that is traditionally used for various skin conditions was loaded in the vesicles. The developed nanovesicles were characterized in terms of diameter, polydispersity, ζ-potential, deformability, recovery, encapsulation efficiency, stability, and release kinetics. Nanovesicle permeation properties through artificial membranes and rabbit ear skin were investigated using skin-PAMPATM and Franz cells were also evaluated. Escinosomes, made of phosphatidylcholine and escin, were loaded with berberine chloride. These nanovesicles displayed the best characteristics for skin application, particularly optimal polydispersity (0.17) and deformability, high negative ζ-potential value, great encapsulation efficiency (about 67%), high stability, and the best release properties of berberine chloride (about 75% after 24 h). In conclusion, escinosomes seem to be new vesicular carriers, capable to maintain escin properties such as hyaluronidase inhibition activity, and able to load other active molecules such as berberine chloride, in order to enhance or expand the activity of the loaded drug.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3759 ◽  
Author(s):  
Mauro ◽  
Crosera ◽  
Monai ◽  
Montini ◽  
Fornasiero ◽  
...  

Cerium oxide (CeO2) nanoparticles (NPs) are used in polishing products and absorbents, as promoters in wound healing, and as organopesticide decontaminants. While systemic bioaccumulation and organ toxicity has been described after inhalation, data on CeO2 NPs’ transdermal permeation are lacking. Our study was an in vitro investigation of the permeation of 17-nm CeO2 NPs dispersed in synthetic sweat (1 g L−1) using excised human skin on Franz cells. Experiments were performed using intact and needle-abraded skin, separately. The average amount of Ce into intact and damaged skin samples was 3.64 ± 0.15 and 7.07 ± 0.78 µg cm−2, respectively (mean ± SD, p = 0.04). Ce concentration in the receiving solution was 2.0 ± 0.4 and 3.3 ± 0.7 ng cm−2 after 24 h (p = 0.008). The Ce content was higher in dermal layers of damaged skin compared to intact skin (2.93 ± 0.71 µg cm−2 and 0.39 ± 0.16 µg cm−2, respectively; p = 0.004). Our data showed a very low dermal absorption and transdermal permeation of cerium, providing a first indication of Ce skin uptake due to contact with CeO2.


Sign in / Sign up

Export Citation Format

Share Document