scholarly journals Redox hysteresis of super-Earth exoplanets from magma ocean circulation 

2021 ◽  
Author(s):  
Tim Lichtenberg

<div class="page" title="Page 1"> <div class="section"> <div class="layoutArea"> <div class="column"> <p>Internal redox reactions may irreversibly alter the mantle composition and volatile inventory of terrestrial and super-Earth exoplanets and affect the prospects for atmospheric observations. The global efficacy of these mechanisms, however, hinges on the transfer of reduced iron from the molten silicate mantle to the metal core. Scaling analysis indicates that turbulent diffusion in the internal magma oceans of sub- Neptunes can kinetically entrain liquid iron droplets and quench core formation. This suggests that the chemical equilibration between core, mantle, and atmosphere may be energetically limited by convective overturn in the magma flow. Hence, molten super-Earths possibly retain a compositional memory of their accretion path. Redox control by magma ocean circulation is positively correlated with planetary heat flow, internal gravity, and planet size. The presence and speciation of remanent atmospheres, surface mineralogy, and core mass fraction of atmosphere-stripped exoplanets may thus constrain magma ocean dynamics.</p> </div> </div> </div> </div>

2020 ◽  
Vol 499 (4) ◽  
pp. 4605-4612
Author(s):  
T Giang Nguyen ◽  
Nicolas B Cowan ◽  
Agnibha Banerjee ◽  
John E Moores

ABSTRACT Transit searches have uncovered Earth-size planets orbiting so close to their host star that their surface should be molten, so-called lava planets. We present idealized simulations of the atmosphere of lava planet K2-141b and calculate the return flow of material via circulation in the magma ocean. We then compare how pure Na, SiO, or SiO2 atmospheres would impact future observations. The more volatile Na atmosphere is thickest followed by SiO and SiO2, as expected. Despite its low vapour pressure, we find that a SiO2 atmosphere is easier to observe via transit spectroscopy due to its greater scale height near the day–night terminator and the planetary radial velocity and acceleration are very high, facilitating high dispersion spectroscopy. The special geometry that arises from very small orbits allows for a wide range of limb observations for K2-141b. After determining the magma ocean depth, we infer that the ocean circulation required for SiO steady-state flow is only 10−4 m s−1, while the equivalent return flow for Na is several orders of magnitude greater. This suggests that a steady-state Na atmosphere cannot be sustained and that the surface will evolve over time.


Fluids ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 360
Author(s):  
Catherine Vreugdenhil ◽  
Bishakhdatta Gayen

Ocean convection is a key mechanism that regulates heat uptake, water-mass transformation, CO2 exchange, and nutrient transport with crucial implications for ocean dynamics and climate change. Both cooling to the atmosphere and salinification, from evaporation or sea-ice formation, cause surface waters to become dense and down-well as turbulent convective plumes. The upper mixed layer in the ocean is significantly deepened and sustained by convection. In the tropics and subtropics, night-time cooling is a main driver of mixed layer convection, while in the mid- and high-latitude regions, winter cooling is key to mixed layer convection. Additionally, at higher latitudes, and particularly in the sub-polar North Atlantic Ocean, the extensive surface heat loss during winter drives open-ocean convection that can reach thousands of meters in depth. On the Antarctic continental shelf, polynya convection regulates the formation of dense bottom slope currents. These strong convection events help to drive the immense water-mass transport of the globally-spanning meridional overturning circulation (MOC). However, convection is often highly localised in time and space, making it extremely difficult to accurately measure in field observations. Ocean models such as global circulation models (GCMs) are unable to resolve convection and turbulence and, instead, rely on simple convective parameterizations that result in a poor representation of convective processes and their impact on ocean circulation, air–sea exchange, and ocean biology. In the past few decades there has been markedly more observations, advancements in high-resolution numerical simulations, continued innovation in laboratory experiments and improvement of theory for ocean convection. The impacts of anthropogenic climate change on ocean convection are beginning to be observed, but key questions remain regarding future climate scenarios. Here, we review the current knowledge and future direction of ocean convection arising from sea–surface interactions, with a focus on mixed layer, open-ocean, and polynya convection.


2020 ◽  
Vol 13 (11) ◽  
pp. 5465-5483
Author(s):  
Clément Bricaud ◽  
Julien Le Sommer ◽  
Gurvan Madec ◽  
Christophe Calone ◽  
Julie Deshayes ◽  
...  

Abstract. Ocean biogeochemical models are key tools for both scientific and operational applications. Nevertheless the cost of these models is often expensive because of the large number of biogeochemical tracers. This has motivated the development of multi-grid approaches where ocean dynamics and tracer transport are computed on grids of different spatial resolution. However, existing multi-grid approaches to tracer transport in ocean modelling do not allow the computation of ocean dynamics and tracer transport simultaneously. This paper describes a new multi-grid approach developed for accelerating the computation of passive tracer transport in the Nucleus for European Modelling of the Ocean (NEMO) ocean circulation model. In practice, passive tracer transport is computed at runtime on a grid with coarser spatial resolution than the hydrodynamics, which reduces the CPU cost of computing the evolution of tracers. We describe the multi-grid algorithm, its practical implementation in the NEMO ocean model, and discuss its performance on the basis of a series of sensitivity experiments with global ocean model configurations. Our experiments confirm that the spatial resolution of hydrodynamical fields can be coarsened by a factor of 3 in both horizontal directions without significantly affecting the resolved passive tracer fields. Overall, the proposed algorithm yields a reduction by a factor of 7 of the overhead associated with running a full biogeochemical model like PISCES (with 24 passive tracers). Propositions for further reducing this cost without affecting the resolved solution are discussed.


2021 ◽  
Vol 17 (1) ◽  
pp. 253-267
Author(s):  
Jiang Zhu ◽  
Christopher J. Poulsen

Abstract. Equilibrium climate sensitivity (ECS) has been directly estimated using reconstructions of past climates that are different than today's. A challenge to this approach is that temperature proxies integrate over the timescales of the fast feedback processes (e.g., changes in water vapor, snow, and clouds) that are captured in ECS as well as the slower feedback processes (e.g., changes in ice sheets and ocean circulation) that are not. A way around this issue is to treat the slow feedbacks as climate forcings and independently account for their impact on global temperature. Here we conduct a suite of Last Glacial Maximum (LGM) simulations using the Community Earth System Model version 1.2 (CESM1.2) to quantify the forcing and efficacy of land ice sheets (LISs) and greenhouse gases (GHGs) in order to estimate ECS. Our forcing and efficacy quantification adopts the effective radiative forcing (ERF) and adjustment framework and provides a complete accounting for the radiative, topographic, and dynamical impacts of LIS on surface temperatures. ERF and efficacy of LGM LIS are −3.2 W m−2 and 1.1, respectively. The larger-than-unity efficacy is caused by the temperature changes over land and the Northern Hemisphere subtropical oceans which are relatively larger than those in response to a doubling of atmospheric CO2. The subtropical sea-surface temperature (SST) response is linked to LIS-induced wind changes and feedbacks in ocean–atmosphere coupling and clouds. ERF and efficacy of LGM GHG are −2.8 W m−2 and 0.9, respectively. The lower efficacy is primarily attributed to a smaller cloud feedback at colder temperatures. Our simulations further demonstrate that the direct ECS calculation using the forcing, efficacy, and temperature response in CESM1.2 overestimates the true value in the model by approximately 25 % due to the neglect of slow ocean dynamical feedback. This is supported by the greater cooling (6.8 ∘C) in a fully coupled LGM simulation than that (5.3 ∘C) in a slab ocean model simulation with ocean dynamics disabled. The majority (67 %) of the ocean dynamical feedback is attributed to dynamical changes in the Southern Ocean, where interactions between upper-ocean stratification, heat transport, and sea-ice cover are found to amplify the LGM cooling. Our study demonstrates the value of climate models in the quantification of climate forcings and the ocean dynamical feedback, which is necessary for an accurate direct ECS estimation.


2012 ◽  
Vol 25 (21) ◽  
pp. 7544-7563 ◽  
Author(s):  
Jian Lu ◽  
Bin Zhao

Two suites of partial coupling experiments are devised with the upper-ocean dynamics version (UOM) of the CCSM3 to isolate the effects of the feedbacks from the change of the wind-driven ocean circulation and air–sea heat flux in the global climate response to the forcing of doubling CO2. The partial coupling is achieved by implementing a so-called overriding technique, which helps quantitatively partition the total response in the fully coupled model to the feedback component in question and the response to external forcing in the absence of the former. By overriding the wind stress seen by the ocean and the wind speed through the bulk formula for evaporation, the experiments help to reveal that (i) the wind–evaporation–SST (WES) feedback is the main formation mechanism for the tropical SST pattern under the CO2 forcing, verifying the hypothesis proposed by Xie et al.; (ii) the weakened tropical Pacific wind is shown in this UOM model not to be the cause for the enhanced equatorial Pacific warming, as one might expect from the thermocline and Bjerknes feedbacks; (iii) WES is also the leading mechanism for shaping the tropical precipitation response in the ocean; and (iv) both the wind-driven ocean dynamical feedback and the WES feedback act to increase the persistence of the southern annular mode (SAM) and the increased time scale of the SAM due to these feedbacks manifests itself in the response of the jet shift to an identical CO2 forcing, in a manner conforming to the fluctuation–dissipation theorem.


2021 ◽  
Author(s):  
Tim Lichtenberg ◽  
Robert J. Graham ◽  
Ryan Boukrouche ◽  
Raymond T. Pierrehumbert

<p>The earliest atmospheres of rocky planets originate from extensive volatile release during magma ocean epochs that occur during assembly of the planet. These establish the initial distribution of the major volatile elements between different chemical reservoirs that subsequently evolve via geological cycles. Current theoretical techniques are limited in exploring the anticipated range of compositional and thermal scenarios of early planetary evolution. However, these are of prime importance to aid astronomical inferences on the environmental context and geological history of extrasolar planets. In order to advance the potential synergies between exoplanet observations and inferrences on the earliest history and climate state of the solar system terrestial planets, I will present a novel numerical framework that links an evolutionary, vertically-resolved model of the planetary silicate mantle with a radiative-convective model of the atmosphere. Numerical simulations using this framework illustrate the sensitive dependence of mantle crystallization and atmosphere build-up on volatile speciation and predict variations in atmospheric spectra with planet composition that may be detectable with future observations of exoplanets. Magma ocean thermal sequences fall into three general classes of primary atmospheric volatile with increasing cooling timescale: CO, N<sub>2</sub>, and O<sub>2</sub> with minimal effect on heat flux, H<sub>2</sub>O, CO<sub>2</sub>, and CH<sub>4</sub> with intermediate influence, and H<sub>2</sub> with several orders of magnitude increase in solidification time and atmosphere vertical stratification. In addition to these time-resolved results, I will present a novel formulation and application of a multi-species moist-adiabat for condensable-rich magma ocean and archean earth analog atmospheres, and outline how the cooling of such atmospheres can lead to exotic climate states that provide testable predictions for terrestrial exoplanets.</p>


2020 ◽  
Vol 33 (6) ◽  
pp. 2351-2370 ◽  
Author(s):  
Olivier Arzel ◽  
Thierry Huck

AbstractAtmospheric stochastic forcing associated with the North Atlantic Oscillation (NAO) and intrinsic ocean modes associated with the large-scale baroclinic instability of the North Atlantic Current (NAC) are recognized as two strong paradigms for the existence of the Atlantic multidecadal oscillation (AMO). The degree to which each of these factors contribute to the low-frequency variability of the North Atlantic is the central question in this paper. This issue is addressed here using an ocean general circulation model run under a wide range of background conditions extending from a supercritical regime where the oceanic variability spontaneously develops in the absence of any atmospheric noise forcing to a damped regime where the variability requires some noise to appear. The answer to the question is captured by a single dimensionless number Γ measuring the ratio between the oceanic and atmospheric contributions, as inferred from the buoyancy variance budget of the western subpolar region. Using this diagnostic, about two-thirds of the sea surface temperature (SST) variance in the damped regime is shown to originate from atmospheric stochastic forcing whereas heat content is dominated by internal ocean dynamics. Stochastic wind stress forcing is shown to substantially increase the role played by damped ocean modes in the variability. The thermal structure of the variability is shown to differ fundamentally between the supercritical and damped regimes, with abrupt modifications around the transition between the two regimes. Ocean circulation changes are further shown to be unimportant for setting the pattern of SST variability in the damped regime but are fundamental for a preferred time scale to emerge.


Author(s):  
Keiko Hamano

A magma ocean is a global layer of partially or fully molten rocks. Significant melting of terrestrial planets likely occurs due to heat release during planetary accretion, such as decay heat of short-lived radionuclides, impact energy released by continuous planetesimal accretion, and energetic impacts among planetary-sized bodies (giant impacts). Over a magma ocean, all water, which is released upon impact or degassed from the interior, exists as superheated vapor, forming a water-dominated, steam atmosphere. A magma ocean extending to the surface is expected to interact with the overlying steam atmosphere through material and heat exchange. Impact degassing of water starts when the size of a planetary body becomes larger than Earth’s moon or Mars. The degassed water could build up and form a steam atmosphere on protoplanets growing by planetesimal accretion. The atmosphere has a role in preventing accretion energy supplied by planetesimals from escaping, leading to the formation of a magma ocean. Once a magma ocean forms, part of the steam atmosphere would start to dissolve into the surface magma due to the high solubility of water into silicate melt. Theoretical studies indicated that as long as the magma ocean is present, a negative feedback loop can operate to regulate the amount of the steam atmosphere and to stabilize the surface temperature so that a radiative energy balance is achieved. Protoplanets can also accrete the surrounding H2-rich disk gas. Water could be produced by oxidation of H2 by ferrous iron in the magma. The atmosphere and water on protoplanets could be a mixture of outgassed and disk-gas components. Planets formed by giant impact would experience a global melting on a short timescale. A steam atmosphere could grow by later outgassing from the interior. Its thermal blanketing and greenhouse effects are of great importance in controlling the cooling rate of the magma ocean. Due to the presence of a runaway greenhouse threshold, the crystallization timescale and water budget of terrestrial planets can depend on the orbital distance from the host star. The terrestrial planets in our solar system essentially have no direct record of their earliest history, whereas observations of young terrestrial exoplanets may provide us some insight into what early terrestrial planets and their atmosphere are like. Evolution of protoplanets in the framework of pebble accretion remains unexplored.


2019 ◽  
Vol 117 (2) ◽  
pp. 889-894
Author(s):  
Torben Struve ◽  
David J. Wilson ◽  
Tina van de Flierdt ◽  
Naomi Pratt ◽  
Kirsty C. Crocket

The Southern Ocean is a key region for the overturning and mixing of water masses within the global ocean circulation system. Because Southern Ocean dynamics are influenced by the Southern Hemisphere westerly winds (SWW), changes in the westerly wind forcing could significantly affect the circulation and mixing of water masses in this important location. While changes in SWW forcing during the Holocene (i.e., the last ∼11,700 y) have been documented, evidence of the oceanic response to these changes is equivocal. Here we use the neodymium (Nd) isotopic composition of absolute-dated cold-water coral skeletons to show that there have been distinct changes in the chemistry of the Southern Ocean water column during the Holocene. Our results reveal a pronounced Middle Holocene excursion (peaking ∼7,000–6,000 y before present), at the depth level presently occupied by Upper Circumpolar Deep Water (UCDW), toward Nd isotope values more typical of Pacific waters. We suggest that poleward-reduced SWW forcing during the Middle Holocene led to both reduced Southern Ocean deep mixing and enhanced influx of Pacific Deep Water into UCDW, inducing a water mass structure that was significantly different from today. Poleward SWW intensification during the Late Holocene could then have reinforced deep mixing along and across density surfaces, thus enhancing the release of accumulated CO2 to the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document