scholarly journals Study on the optimum amount and kinetics of chitosan adsorbing Fe (III) in restaurant sewage treatment technology

2021 ◽  
Vol 804 (4) ◽  
pp. 042086
Author(s):  
Yuanchao Zhang
2021 ◽  
Vol 804 (4) ◽  
pp. 042085
Author(s):  
Yibo Wang ◽  
Hua Liu ◽  
Zhijian Mai ◽  
Peiqi Jiang ◽  
Canjie Yang ◽  
...  

2012 ◽  
Vol 599 ◽  
pp. 543-546
Author(s):  
Yang Yong ◽  
Xiao Liu ◽  
Yao Zong Zhang

With the economic development of the coastal development zone, the coastal industrial and economic development is rapid and the other residents' living consumption is lagging behind, resulting in a new coastal development zone COD / BOD low, coupled with the regional characteristics of the coastal areas, making the coastal areas of urban sewagetreatment plant of the difficult problems of biochemical treatment. This study focused on the reasons for the difficulties of urban sewage in coastal areas of biochemical treatment solution to the problem, and provide relevant technical programs and technical parameters for the construction of a new coastal development zone in the city sewage treatment.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 363-374 ◽  
Author(s):  
F. Rogalla ◽  
G. Roudon ◽  
J. Sibony ◽  
F. Blondeau

Stringent effluent quality programs to limit wastewater discharges into receiving waters require extensive upgrading of conventional wastewater treatment plants. Large facilities built some decades ago are now often located in densely urbanised areas where land is unavailable. Since nitrogen and phophorus removal often require additional unit processes, innovative solutions have to be found to upgrade existing plants for nutrient removal. This paper shows large scale examples of compact technology and the additional upgrading flexibility provided. New facilities are implemented in sensitive neighborhoods by creative siting under sports stadiums, parks or buildings. In covered plants, air emission control becomes of primary importance. To reduce visual impacts and facilitate odour control, more and more underground treatment plants are constructed, allowing multiple use of plant surfaces. Several plants are illustrated in inner-city locations, avoiding infrastructure cost to pump sewage to remote sites. Most of the presented plants incorporate spacesaving settling facilities and high rate biological reactors to reduce the ‘footprints' of the installations and thus favour coverage. Parallel plates in primary setllers reduce the surface to about one tenth of conventional systems. Biocarbone aerated filters combine biodegradation with very high removal rates and retention of particles in one reactor, without additional clarification or filtration. Air treatment for large plant is mostly performed by chemical scrubbing, completely eliminating environmental nuisances. Performance results of both air and water treatment technology are given. Examples include recent sewage treatment plants on the French Mediterranean Coast. A physico-chemical treatment plant for 1 Million p.e. has operated since 1987 under a stadium in Marseille. In Monaco, the sewage treatment plant for 100 000 p.e.is located in the city center underneath a building of 3000 m2. Primary lamella settlers are followed by biological treatment on Biocarbone aerated filters and air is chemically deodourised. Similar technology is used in Antibes' 200 000 p.e. plant, integrated underneath a park close to the beach.


2020 ◽  
Vol 82 (8) ◽  
pp. 1495-1508
Author(s):  
Shuyuan Tang ◽  
Ling Gao ◽  
Hongze Gao ◽  
Zongshi Chen ◽  
Donglei Zou

Abstract Microplastics pollution has been a focus for researchers in recent years worldwide, for the large quantities of plastics in production and the resistance to degradation. China's microplastics pollution attracts much attention because of its long coastline, large population and rapid economic development. This review addresses the widespread microplastics pollution in China's water ecosystems through available research results from recent years and analyses the abundance, characteristics, fate and risk of microplastics. This paper also discusses the current treatment technology of microplastics. The conclusions show that estuaries are severely affected by microplastics pollution; the accumulation of microplastics and adsorption of contaminants by microplastics could also lead to serious risks besides ingestion; there are few technologies that can efficiently remove microplastics pollution in sewage treatment plants. Finally, this review suggests directions for future research trends.


2020 ◽  
Vol 194 ◽  
pp. 04046
Author(s):  
Xiulan Zhu ◽  
Yanlong Ran ◽  
Wenjie Guo ◽  
Ke Gai ◽  
Yanju Li ◽  
...  

With the long-term water injection development of Longdong oilfields, most of the oilfield blocks have been fully in the mid-high water cut period, and the amount of oil production wastewater is increasing year by year. In order to prevent the waste of resources and energy of oil production sewage, the oil production sewage after reaching the standard is treated for reinjection, which will ensure the sustainable development of the oil field. Oil production wastewater contains crude oil, solid-phase suspended solids and other pollutants, with high salinity, and problems such as difficulty in oil-water separation, sludge, scaling and corrosion. The sewage treatment system uses a multifunctional water treatment device to effectively remove oil and filter through the “special microorganism + air flotation + filtration” process, and build a sludge sewage tank for sludge discharge and backwashing. The reformed oil recovery wastewater reinjection treatment technology turns “sewage” into “clear flow”, reduces operating costs, improves wastewater treatment efficiency, and meets the water quality requirements of oilfield reinjection water.


2014 ◽  
Vol 1037 ◽  
pp. 57-60
Author(s):  
Jian Ping Jia ◽  
Li Cai ◽  
Shou Bo Zhang ◽  
Yuan Zhao

The problem of the urban water shortage and water pollution is becoming problem more and more serious. Therefore, governments around the world pay close attention to the application of sewage treatment technology, especially that with high efficiency, low energy consumption and strong operability. Dielectric barrier discharge (DBD) can produce low temperature plasma under atmospheric pressure, and the application of the technology for sewage treatment research gradually becomes to be one of hot research. In this paper, the dielectric barrier discharge structure is designed, and the plasma produced is used for sewage treatment research. The system adopts coaxial type discharge structure. The research shows that the structure is safe and reliable. And, it has low discharge power and can discharge uniformly. So, the plasma produced by dielectric barrier discharge can be convenient and easy to used in sewage treatment, and the result is effective.


2012 ◽  
Vol 496 ◽  
pp. 542-545
Author(s):  
Xiang Ping Kong

The enhanced oil recovery characteristics of a Geobacillus sp. was investigated by shake flask experiments, blind-tube oil displacement experiments and core flooding tests. The strain exhibited good properties such as resisting high temperature, taking different types of crude oil as the sole carbon source, reducing the viscosity of crude oil, emulsifying and dispersing crude oil or liquid wax. The oil in the dead area could be effectively driven out by the strain, and the oil recovery of original oil in place had been increased by 12.9-15.9% after 5 treatments in 50 days by adopting air-assistant technique (air/liquid 10:1, v/v) due to the synergistic effect of the bacteria and their metabolites such as biogas and biosurfactants. The strain seems to be a promising candidate for microbial enhanced oil recovery and underground sewage treatment technology.


2012 ◽  
Vol 468-471 ◽  
pp. 2437-2440
Author(s):  
Xin Gang Yu ◽  
En Shen Wu ◽  
Zeng Min Han

By taking the fillings from the wastewater treatment reactor of a practically stable operation of the BAF, it is to test the lipid phosphorus biomass both in the bio-film and floc in the fillings, and active changing laws of microbes. The experiments show that BAF sewage treatment results from the joint action of bio-film and biological floc. The experiments provide theoretical foundations for the operating mechanism of BAF, packing height and the optimization of backwash time. Due to its high efficiency, energy saving, small area, easy operation and management, Biological Aerated Filter (BAF) technology has become a research focus[1] of a biological wastewater treatment technology in recent years. BAF process is characterized of a lot of filler in the activated sludge, besides the bio-film on the fillings. This sludge contains active living organisms, shed bio-film, suspended matters from the raw sewage and other adsorptions from the wastewater. They are collectively referred to as biological floc. When oxidating and decomposing organic matters in the sewage, it intercepts and adsorb sunken substances. Throughout BAF operation process, it is as irreplaceable as the bio-film.


2017 ◽  
Vol 24 (1) ◽  
pp. 195-206 ◽  
Author(s):  
Sylwia Myszograj ◽  
Ewelina Płuciennik-Koropczuk ◽  
Anita Jakubaszek

Abstract The paper presents the results of studies concerning the designation of COD fraction in raw wastewater. The research was conducted in four municipal mechanical-biological sewage treatment plants and one industrial sewage treatment plant. The following fractions of COD were determined: non-biodegradable (inert) soluble SI, biodegradable soluble fraction SS, particulate slowly degradable XS and particulate non-biodegradable XI. The methodology for determining the COD fraction was based on the ATV-A131 guidelines and Łomotowski-Szpindor methodology. The real concentration of fractions in raw wastewater and the percentage of each fraction in total COD are different from data reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document