scholarly journals Characterizing Naked Nuclei Frequency and Movement in Primary AML Cell Culture Using an ECM-Based Model

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2365-2365
Author(s):  
Shireen J. Usman ◽  
Thomas Conley ◽  
Hannah E. Whitehead ◽  
Wojciech Wojciechowski ◽  
Kaye Thomas ◽  
...  

Abstract INTRODUCTION Naked nuclei (NN) are observed upon examining bone marrow aspirate slides from healthy individuals and from those with hematologic malignancies, but are not well understood. Without characteristic findings like cytoplasm or plasma membrane, NN are considered remnants of slide preparation or are discounted as cells of undetermined significance. NN have been associated with poor prognosis in several solid cancers. Understanding the significance of NN in hematologic malignancies such as acute myelogenous leukemia (AML) may elucidate valuable diagnostic and prognostic knowledge. Decellularized Wharton's jelly matrix (DWJM) is an extra cellular matrix (ECM)-based in vitro model that shares similar elements with the bone marrow ECM and can be used as scaffolding to culture leukemia cells. We hypothesize that NN exist in AML and interact with other cells, suggesting potential biological relevance within the bone marrow microenvironment. METHODS Primary AML samples obtained by leukapheresis were cultured in suspension with growth media or in the presence of DWJM submerged in growth media. In samples grown with DWJM, cells that were non-adherent to the matrix were collected first and then adherent cells were isolated by treating DWJM with collagenase. Live cells were stained with CellVue Maroon (CVM) for membrane, CellTracker Green (CTG) for cytoplasm, and Hoechst 33342 for nucleus, followed by analysis with Amnis/Luminex ImageStream-X imaging flow cytometer (Figure 1A). NN were defined as events positive for nuclear stain and negative for cytoplasmic and membrane stains (Figure 1B). 3-D movement of adherent AML cells in DWJM was captured in real time using confocal microscopy. Fixed cells from leukemia cell line K562 served as a control for movement. NN (Hoechst positive only), non-nucleated (Hoechst negative/CTG positive), and nucleated cells (Hoechst and CTG positive) were identified by fluorescent labeling. NN were also observed after isolation by cell sorting. Cell speed, cell displacement from origin, and change in distance to closest neighboring cell over time were measured. Additionally, flow sorted NN were examined by immunohistochemistry (IHC). RESULTS Adherent populations contained significantly more NN than non-adherent and suspension populations. The frequency of NN in matrix adherent cells ranged from 0.4-2.4% at day 3 and 0.5-5.4% at day 7 of culture (Figure 1C). Through confocal microscopic analysis, we observed NN, nucleated, and non-nucleated cells moving at speeds ranging from 0.002-0.08 µm/sec. Fixed cells showed no discernible movement in DWJM. The average speed of NN [0.019 mm/s, SD 0.011] significantly differed from the average speed of nucleated and non-nucleated cells [0.027 mm/s, SD 0.016] (p=0.004) (Figure 1E). To demonstrate directional movement, we measured change in distance between NN and closest neighboring nucleated or non-nucleated cells over time. Cells (nucleated and non-nucleated) and NN moved closer to each other over time suggesting directional movement (p=0.001) (Figure 1D). NN also showed movement in DWJM after isolation by cell sorting. IHC analysis showed sorted NN stained positive for nuclear lamin A/C, which are considered markers of nuclear membrane (Figure 1F). CONCLUSIONS Our findings confirm that NN are present in primary AML cells cultured in vitro using ourECM-based model and that they can be isolated using flow cytometry. Additionally, NN display directional movement in DWJM suggesting that they interact with other cells and may be biologically relevant structures in the bone marrow microenvironment. Figure 1 Figure 1. Disclosures Baran: AstraZeneca/Acerta: Research Funding. Chu: Pfizer: Current equity holder in publicly-traded company; Acerta/AstraZeneca: Research Funding; TG Therapeutics: Research Funding.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3384-3384
Author(s):  
Satoshi Yoshioka ◽  
Yasuo Miura ◽  
Masaki Iwasa ◽  
Aya Fujishiro ◽  
Noriko Sugino ◽  
...  

Abstract Mesenchymal stromal/stem cells (MSCs) are a major source of cell for cell therapy. MSCs derived from bone marrow (BMMSCs) have been mostly used in clinical applications. BMMSCs can be easily isolated as a cell population that adheres to plastic culture dishes within 1 week of culture. A recent report has demonstrated that cells that remain in suspension and fail to form adherent colonies contain a fraction of late adherent cells that resembles BMMSCs (Biomed Res Int, 2013; 2013: 790842). Umbilical cord blood (UCB) is as accessible as bone marrow for the isolation of MSCs. In this study, we identified a late adherent subpopulation in UCB and determined its hematopoiesis-supporting activity. Forty-five UCB units, which were not matched to the eligibility criterion defined in the Japan UCB donation program, were collected after delivery of placenta. Written informed consent was obtained before delivery from all pregnant women who participated in the study. The study protocol was approved by the ethics committee of the Kyoto University Graduate School of Medicine. Mononuclear cells were isolated from UCB by the density gradient centrifugation method with (n = 19) and without (n = 18) subsequent separation of CD34 negative cells using anti-CD34 immunomagnetic microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany). Nucleated cells were separated by the hydroxyethyl starch sedimentation method from the other eight UCB units. The cells were then seeded into a culture flask and cultured in alpha minimal essential medium supplemented with 15% FBS (Culture 1; C1). After 1 week of culture, non-adherent cells in C1 supernatant were collected and re-seeded into a new flask (C2). The attached cells in C1 were cultured until adherent colonies emerged, after which they were detached using trypsin/EDTA and twice passaged to obtain a sufficient number of cells (C1 cells). In the same way, after 1 week of culture, non-adherent cells in C2 supernatant were collected and re-seeded into a new flask (C3). The attached cells in C2 were cultured to obtain C2 cells. Afterwards, re-seeding and culture (C4, C5c) were repeated until no new colonies were formed. Collected cells were cryopreserved and thawed when required in experiments. BMMSCs were isolated from human bone marrow cells purchased from AllCells (Emeryville, CA). C1 cells, the so-called UCBMSCs, were successfully isolated from 18 units (40 %). Adherent cells isolated from C2 and later were defined as elate adherent cellsf and, were obtained from 9 units: these cells were referred to as C2 cells (from 9 units), C3 cells (from 9 units), C4 cells (from 6 units) and C5 cells (from 2 units). The interval from seeding to the first colony formation in C1 was shorter in these 9 units than that in the other 9 units that contained only C1 cells: 10.8 } 1.4 vs 15.9 } 4.5 days, p < 0.01. The volume of the former 9 units tended to be large compared to the latter 9 units: 49.6 } 10.5 vs 33.7 } 21.0 mL, p = 0.07. These findings indicated that UCB containing late adherent cells was suitable for a cell source of MSCs. Next, we examined whether these late adherent cells (C2 and C3 cells) had properties consistent with those of MSCs. Both C2 and C3 cells showed spindle-shaped fibroblast-like morphology and the same immunophenotype as C1 cells: positive for CD73, CD90 and CD105, and negative for CD34, CD45 and HLA-DR. They had osteogenic, adipogenic and chondrogenic differentiation potentials in vitro. These findings are the minimal criteria for MSCs (Cytotherapy, 2006; 8:315). Finally, we evaluated the hematopoiesis-supporting activity of these cells in vitro and in vivo. CD45-positive hematopoietic cells were expanded when co-cultured of CD34-positive hematopoietic progenitor cells (6 ~ 102 cells) with C2 or C3 cells (2 ~ 104 cells) in vitro as much as when co-cultured with C1 cells (Figure A). In vivo analysis was conducted by using subcutaneous transplantation of MSCs on NOD/SCID mice (Int J Hematol, 2015; 102: 218). C2 cells induced trabecular bone formation and bone marrow hematopoiesis as well as C1 cells, however, C3 cells did not induce hematopoiesis (Figure B). In conclusion, we demonstrated that UCB contains a late adherent cell subpopulation with the same characteristics and hematopoiesis-supporting activity as those of UCBMSCs isolated using the conventional method. The continuance of cell culture without discarding suspension cells could improve the efficiency of isolation of MSCs from UCB. Disclosures Hirai: Kyowa Hakko Kirin: Research Funding; Novartis Pharma: Research Funding. Maekawa:Bristol-Myers K.K.: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2603-2603 ◽  
Author(s):  
Alyssa Carey ◽  
Swati Garg ◽  
Megan M Cleary ◽  
David K Edwards ◽  
Marc Loriaux ◽  
...  

Abstract Background: p38 mitogen-activated protein kinase (p38MAPK) is activated by various pro-inflammatory and stress-related stimuli, and has been an attractive therapeutic target for autoimmune diseases. p38MAPK (hereafter referred to as p38) signaling is also involved in cell proliferation, differentiation, apoptosis, and invasion, suggesting that it may be a potential therapeutic target for cancer. We found that inflammatory cytokines, including interleukin-1 (IL-1), promote growth and survival of more than half of the acute myeloid leukemia (AML) patient samples we tested. Since p38 is a downstream mediator of inflammatory pathways, we hypothesized that targeting p38 might be an effective therapeutic strategy in AML and other hematologic malignancies. To test this hypothesis, we evaluated the effectiveness of three p38 inhibitors using in vitro studies in primary AML patient samples. We found that targeting p38 blocks IL-1-activated extrinsic signaling and is a critical therapeutic target in a large subset of AML patients. Methods: We screened ~1000 primary leukemia patient samples for sensitivity to p38 inhibition using varying concentrations of doramapimod (BIRB 796) in a cell growth assay. We compared the sensitivity profile of doramapimod with 2 other small-molecule p38 inhibitors currently in clinical trials: ARRY 614, a dual p38/Tie2 inhibitor, and ralimetinib, which blocks activation of p38 by its substrate MK2. We determined cell viability, survival, and downstream signaling in the presence of 10 ng/ml IL-1α or IL-1β. Patient samples with IC50 < 1000nM were considered drug responsive. Results: In our patient population, we observed response rates of 31% in AML (109/350), 27% in myelodysplastic syndromes (MDS; 25/93), 19% in myeloproliferative neoplasms (23/123), 13% in mature B-cell neoplasms (30/232), and 10% in precursor lymphoid neoplasms (19/182). Focusing on AML, we compared the sensitivity profile of doramapimod with two other small-molecule p38 inhibitors, ralimetinib and ARRY 614. These inhibitors showed strikingly similar sensitivity profiles to doramapimod when tested in an additional 25 primary AML samples, with ~25% responsive and median IC50 of 11 nM for ARRY 614 (range: 7-650nM), 105 nM for ralimetinib (range: 7-850nM), and 18 nM for BIRB 796 (range: 13-40nM). Because IL-1 is known to stimulate p38 signaling, we compared the response rates for these three p38 inhibitors with or without IL-1 in a dose-response study. IL-1 increased the percent of AML samples responding to p38 inhibition from 25% to 60%, indicating a potentially important role of extrinsic inflammatory stimuli in p38 inhibitor sensitivity. Consistent with this all three p38 inhibitors were similarly effective in blocking the growth of primary AML CD34+ progenitors, suggesting that targeting p38 might reduce early progenitor AML cells. Further, we compared doramapimod, ralimetinib, and ARRY 614 for their ability to inhibit p38 phosphorylation in primary AML samples using flow cytometry and immunoblot analysis; all three inhibitors blocked p38 pathway activation in AML cells. Notably, in clinical studies of ARRY 614 in MDS patients, preliminary biomarker analyses demonstrated persistent inhibition of phospho-p38 in the bone marrow during the treatment. Also, consistent with functional inhibition of p38, there was a profound decrease in plasma cytokine concentrations, most significantly IL-1, during ARRY 614 treatment. In 250 primary AML samples, we observed no correlation between BIRB 796 sensitivity in vitro and clinical metrics such as white blood cell count, blast percentage in peripheral blood or bone marrow, karyotype, or tumor genotype. This suggests that IL-1 and p38 activation might be independent biomarkers of drug sensitivity. Conclusions: These data underscore the importance of the p38MAPK pathway in the pathobiology of AML and provide strong preclinical evidence to support p38MAPK as a therapeutic target. Targeting p38MAPK might also block tumor-extrinsic signaling, as indicated by IL-1-activated signaling. That all three p38MAPK inhibitors showed comparable sensitivity profiles holds promise for ARRY614, which showed the lowest median IC50 and is currently in clinical development. In addition, with further study these findings may be extended to hematologic malignancies other than AML. Disclosures Winski: Array BioPharma Inc.: Employment. Cable:Array BioPharma Inc.: Employment. Tyner:Array Biopharma: Research Funding; Janssen Pharmaceuticals: Research Funding; Incyte: Research Funding; Constellation Pharmaceuticals: Research Funding; Aptose Biosciences: Research Funding. Agarwal:CTI BioPharma: Research Funding.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1137
Author(s):  
Laura García-Mendívil ◽  
Diego R. Mediano ◽  
Adelaida Hernaiz ◽  
David Sanz-Rubio ◽  
Francisco J. Vázquez ◽  
...  

Scrapie is a prion disease affecting sheep and goats and it is considered a prototype of transmissible spongiform encephalopathies (TSEs). Mesenchymal stem cells (MSCs) have been proposed as candidates for developing in vitro models of prion diseases. Murine MSCs are able to propagate prions after previous mouse-adaptation of prion strains and, although ovine MSCs express the cellular prion protein (PrPC), their susceptibility to prion infection has never been investigated. Here, we analyze the potential of ovine bone marrow-derived MSCs (oBM-MSCs), in growth and neurogenic conditions, to be infected by natural scrapie and propagate prion particles (PrPSc) in vitro, as well as the effect of this infection on cell viability and proliferation. Cultures were kept for 48–72 h in contact with homogenates of central nervous system (CNS) samples from scrapie or control sheep. In growth conditions, oBM-MSCs initially maintained detectable levels of PrPSc post-inoculation, as determined by Western blotting and ELISA. However, the PrPSc signal weakened and was lost over time. oBM-MSCs infected with scrapie displayed lower cell doubling and higher doubling times than those infected with control inocula. On the other hand, in neurogenic conditions, oBM-MSCs not only maintained detectable levels of PrPSc post-inoculation, as determined by ELISA, but this PrPSc signal also increased progressively over time. Finally, inoculation with CNS extracts seems to induce the proliferation of oBM-MSCs in both growth and neurogenic conditions. Our results suggest that oBM-MSCs respond to prion infection by decreasing their proliferation capacity and thus might not be permissive to prion replication, whereas ovine MSC-derived neuron-like cells seem to maintain and replicate PrPSc.


Blood ◽  
1986 ◽  
Vol 68 (6) ◽  
pp. 1316-1321 ◽  
Author(s):  
WE Fibbe ◽  
J van Damme ◽  
A Billiau ◽  
PJ Voogt ◽  
N Duinkerken ◽  
...  

Abstract An electrophoretically pure preparation of natural human interleukin-1 (IL-1) was shown to stimulate in vitro colony formation in human bone marrow cultures. Day 4 myeloid cluster-forming cells (CFC), as well as early (day 7) and late (day 10) granulocyte-macrophage colony-forming units (CFU-GM) were stimulated in a dose-dependent fashion. At optimal concentrations of IL-1, the number of day 4 CFC reached 72%, the number of day 7 CFU-GM reached 32%, and the number of day 10 CFU-GM reached 80% of the respective numbers of colonies obtained by addition of crude leukocyte-conditioned medium (LCM). The IL-1-induced stimulatory effect on CFU-GM growth could be completely neutralized by a rabbit anti-IL-1 antiserum. Colony growth was abrogated by depleting the marrow cell suspensions of phagocytic cells prior to IL-1 addition. Conversely, the effect could be reintroduced by addition of marrow-derived adherent cells to bone marrow cell suspensions that had been depleted of both phagocytic and E rosetting T cells. Furthermore, media conditioned by bone marrow-derived adherent cells or by peripheral blood mononuclear phagocytes in the presence but not in the absence of IL-1, stimulated in vitro colony growth of phagocyte-depleted bone marrow cell suspensions. These results indicate that IL-1 induces release of granulocyte-macrophage colony-stimulating activity (GM-CSA) from human mononuclear phagocytes.


1977 ◽  
Vol 145 (6) ◽  
pp. 1612-1616 ◽  
Author(s):  
T M Dexter ◽  
M A Moore ◽  
A P Sheridan

A culture system is described in which bone marrow-derived adherent cells can support prolonged proliferation and differentiation of genetically incompatible stem cells and precursor cells. The results suggest that the reactive cells responsible in vivo for host transplantation resistance and for graft-versus-host disease are selectively lost or inhibited in such cultures, which may provide a vehicle for studying some of the cellular mechanisms involved in transplantation resistance.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 143-143 ◽  
Author(s):  
Saar Gill ◽  
Sarah K Tasian ◽  
Marco Ruella ◽  
Olga Shestova ◽  
Yong Li ◽  
...  

Abstract Engineering of T cells with chimeric antigen receptors (CARs) can impart novel T cell specificity for an antigen of choice, and anti-CD19 CAR T cells have been shown to effectively eradicate CD19+ malignancies. Most patients with acute myeloid leukemia (AML) are incurable with standard therapies and may benefit from a CAR-based approach, but the optimal antigen to target remains unknown. CD123, the IL3Rα chain, is expressed on the majority of primary AML specimens, but is also expressed on normal bone marrow (BM) myeloid progenitors at lower levels. We describe here in vitro and in vivostudies to evaluate the feasibility and safety of CAR-based targeting of CD123 using engineered T cells (CART123 cells) as a therapeutic approach for AML. Our CAR consisted of a ScFv derived from hybridoma clone 32716 and signaling domains from 4-1-BB (CD137) and TCR-ζ. Among 47 primary AML specimens we found high expression of CD123 (median 85%, range 6-100%). Quantitative PCR analysis of FACS-sorted CD123dim populations showed measurable IL3RA transcripts in this population, demonstrating that blasts that are apparently CD123dim/neg by flow cytometry may in fact express CD123. Furthermore, FACS-sorted CD123dimblasts cultured in methylcellulose up-regulated CD123, suggesting that anti-CD123 immunotherapy may be a relevant strategy for all AML regardless of baseline myeloblast CD123 expression. CART123 cells incubated in vitro with primary AML cells showed specific proliferation, killing, and robust production of inflammatory cytokines (IFN-α, IFN-γ, RANTES, GM-CSF, MIP-1β, and IL-2 (all p<0.05). In NOD-SCID-IL2Rγc-/- (NSG) mice engrafted with the human AML cell line MOLM14, CART123 treatment eradicated leukemia and resulted in prolonged survival in comparison to negative controls of saline or CART19-treated mice (see figure). Upon MOLM14 re-challenge of CART123-treated animals, we further demonstrated robust expansion of previously infused CART123 cells, consistent with establishment of a memory response in animals. A crucial deficiency of tumor cell line models is their inability to represent the true clonal heterogeneity of primary disease. We therefore engrafted NSG mice that are transgenic for human stem cell factor, IL3, and GM-CSF (NSGS mice) with primary AML blasts and treated them with CART123 or control T cells. Circulating myeloblasts were significantly reduced in CART123 animals, resulting in improved survival (p = 0.02, n=34 CART123 and n=18 control animals). This observation was made regardless of the initial level of CD123 expression in the primary AML sample, again confirming that apparently CD123dimAML may be successfully targeted with CART123 cells. Given the potential for hematologic toxicity of CART123 immunotherapy, we treated mice that had been reconstituted with human CD34+ cells with CART123 cells over a 28 day period. We observed near-complete eradication of human bone marrow cells. This finding confirmed our finding of a significant reduction in methylcellulose colonies derived from normal cord blood CD34+ cells after only a 4 hour in vitro incubation with CART123 cells (p = 0.01), and was explained by: (i) low level but definite expression of CD123 in hematopoietic stem and progenitor cells, and (ii) up-regulation of CD123 upon myeloid differentiation. In summary, we show for the first time that human CD123-redirected T cells eradicate both primary human AML and normal bone marrow in xenograft models. As human AML is likely preceded by clonal evolution in normal or “pre-leukemic” hematopoietic stem cells (Hong et al. Science 2008, Welch et al. Cell 2012), we postulate that the likelihood of successful eradication of AML will be enhanced by myeloablation. Hence, our observations support CART-123 as a viable therapeutic strategy for AML and as a novel cellular conditioning regimen prior to hematopoietic cell transplantation. Figure 1. Figure 1. Disclosures: Gill: Novartis: Research Funding; American Society of Hematology: Research Funding. Carroll:Leukemia and Lymphoma Society: Research Funding. Grupp:Novartis: Research Funding. June:Novartis: Research Funding; Leukemia and Lymphoma Society: Research Funding. Kalos:Novartis: Research Funding; Leukemia and Lymphoma Society: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1297-1297 ◽  
Author(s):  
Joanna Zabkiewicz ◽  
Marie Gilmour ◽  
Robert K. Hills ◽  
Elizabeth Bone ◽  
Alan Davidson ◽  
...  

Abstract Tefinostat (CHR-2845) is a novel monocyte/macrophage-targeted histone deacetylase inhibitor (HDACi) that is cleaved to an active acid, CHR-2847, by an intracellular esterase (human carboxylesterase-1, hCE-1), found only in cells of monocytoid lineage and hepatocytes. The clinical uptake of HDAC inhibition to date has been restricted by systemic toxicities including gastrointestinal disturbance, thrombocytopenia and fatigue. Accumulation of CHR-2847 in hCE-1-expressing cells results in a 20-100-fold increase in targeted anti-proliferative potency, considerably widening the potential therapeutic window in malignancies involving cells of monocytoid lineage (AML-M4, AML-M5 and CMML) by sparing the systemic toxicological effects associated with non-selective HDAC inhibition. The in vitro efficacy of tefinostat was assessed in primary AMLs using stored mononuclear cells obtained at diagnosis from 70 AML patients. Dose-dependent induction of apoptosis and significant growth inhibitory effects were seen in M4 /M5 AMLs (median IC50; 1.1µM+/-1.8) compared to non-M4/M5 FAB types (median IC50 5.1µM +/-4.7) (p=0.007). This potency and monocytoid specificity was not reproduced when using an alternative HDACi, tefinostat analogue CHR-8185 which is not cleaved by hCE-1. hCE-1 protein expression in patient samples was measured by both intracellular flow cytometry and immunoblotting, with highest levels seen in M4/M5 patients. This observation was validated by microarray analysis of hCE-1 mRNA in a further 130 AML samples with M4/M5 AMLs showing significant overexpression compared to normal bone marrow CD34+ cells (p=0.009). High levels of hCE-1 expression were found to drive a significant increase in tefinostat efficacy as measured by growth inhibition assays (p=0.001), and also strongly correlated with expression of the mature monocytoid marker CD14+. Sub-population analysis by flow cytometry revealed variable sensitivity to tefinostat within AML blasts, with CD14+ expressing cells showing maximum growth inhibition. This CD14+ response was accompanied by an induction of intracellular protein acetylation at nanomolar concentrations in tefinostat-responsive samples. Tefinostat-sensitive samples also showed strong induction of the cell cycle arrest and DNA damage sensor protein pH2AX, which is a potential biomarker of patient responsiveness. Importantly, no growth inhibitory effects were seen in normal bone marrow cells (n=5) exposed to AML-toxic doses of tefinostat while, in comparison, equivalent concentrations of the non-hCE-1-dependent analogue CHR-8185 caused considerable cytotoxicity, again emphasising the potential for expansion of the clinical therapeutic window using an hCE-1-dependent agent. In vitro synergy was demonstrated in combination experiments with tefinostat and cytarabine (median Combination Index value=0.68) which is likely to be a logical combination for future clinical evaluation. In summary, monocytoid targeting of HDACi activity was achieved using tefinostat in primary AML samples of monocytoid lineage, with minimal toxicity to normal bone marrow cells at equimolar concentrations. Given the absence of significant toxicity seen in a recently-published phase 1 study of tefinostat in patients with advanced haematological malignancies, further larger scale clinical evaluation of this compound is warranted in haematological malignancies involving cells of monocytoid lineage. Disclosures: Zabkiewicz: Chroma Therapeutics: Research Funding. Gilmour:Chroma Therapeutics: Research Funding. Hills:Chroma Therapeutics: Research Funding. Bone:Chroma Therapeutics: Employment. Davidson:Chroma Therapeutics: Employment. Burnett:Chroma Therapeutics: Research Funding. Knapper:Chroma Therapeutics: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3093-3093
Author(s):  
Michaela R Reagan ◽  
Yuji Mishima ◽  
Yong Zhang ◽  
Patricia Maiso ◽  
Salomon Manier ◽  
...  

Abstract Introduction Recent evidence indicates that tumor cells are not only influenced by their microenvironment, but are also able to drastically alter their surroundings leading to cancer progression. Multiple Myeloma (MM) involves clonal proliferation of malignant plasma cells within the bone marrow, inhibition of osteoblast function, and increased osteoclast activity leading to osteolytic lesions. Our work aims to understand the bi-directional interactions between MM cells and mesenchymal stromal cells (MSCs), using both 2D and 3D in vitro co-culture bone marrow models. Methods We developed a 3D in vitro model system to better mimic myeloma growth within the bone marrow using human MSCs (hMSCs) and fluorescent-, luciferase-labeled MM cell lines seeded into porous, autofluorescent silk scaffolds. Proliferation and osteogenic differentiation of myeloma patient (MM-) and normal donor (ND-) MSCs cultured with or without MM.1S cells were characterized in 2D culture and 3D scaffolds. Non-destructive bioluminescent imaging and fluorescent confocal imaging were used to observe cell growth and cell-cell interactions within scaffolds. Histology was performed to confirm changes in extracellular matrix (ECM) production and bone tissue formation. microRNA (miRNA) profiling was performed on primary ND- (n=3) and MM-MSCs (n=7) using Nanostring technologies. We analyzed 800 human miRNAs from miRBase v.18 and 230 human cancer-related genes using the nCounter® Human Cancer Reference Kit. Gain-of function studies (miRvana mimics) were performed for miRNAs that were down-modulated in MM vs ND-MSCs, and in the 3D model MSCs co-cultured with MM.1S vs MSCs alone, using lipofectamine. Modulation of osteogenesis was evaluated using alizarin red staining and qRT-PCR for the osteogenic markers: IBSP (integrin-binding sialoprotein), Col1a1 (collagen, type I, alpha 1), RUNX2 (runt related transcription factor 2), ALPL (alkaline phosphatase), OPN (secreted phosphoprotein 1), and BGLAP (bone gamma-carboxyglutamate (gla) protein). Results MM-MSCs presented with a lower proliferation rate compared to ND-MSCs and this phenotype was also observed in ND-MSCs co-cultured in the presence of MM.1S cells compared to ND-MSCs alone. Moreover, significant inhibition of MSC growth was evident when co-cultured with MM.1S cells, using a 3D model (Figure 1), where inhibition of osteogenesis, and ECM production were also documented. Alizarin red staining demonstrated inhibited ability for MM-MSCs to undergo osteogenic differentiation. In addition, MM-MSCs differed from ND-MSCs at the gene and miRNA level. Specifically, CDKN1A and CDKN2A were over-expressed in MM vs. ND-MSCs, (P<0.05; fold change >1.2), thus explaining, at least in part, the decreased proliferation of MM-MSCs vs ND-MSCs. Moreover, down-regulation of specific miRNAs (miRNA-199a, -24-3p, -199a, -15a-5p, -16-5p) was demonstrated in MM- vs ND-MSCs, as well as in ND-MSCs vs ND-MSCs co-cultured with MM.1S, using the 3D model. By over-expressing miRNA-199a, -15a-5p and -16-5p, we were able to increase the osteogenic potential, thus suggesting their role in modulating osteogenesis in MM-MSCs. Conclusions Our 3D platform provides a simple, non-destructive, flexible, and clinically relevant tool to spatially and temporally model myeloma growth within bone. It recapitulates decreased bone formation as seen in MM patients and suggests miR-199a-3p, 15a-5p and 16-5p as novel bone anabolic targets. Disclosures: Tai: Onyx: Consultancy. Ghobrial:Onyx: Advisoryboard Other; BMS: Advisory board, Advisory board Other, Research Funding; Noxxon: Research Funding; Sanofi: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 275-275
Author(s):  
Siobhan Glavey ◽  
Salomon Manier ◽  
Antonio Sacco ◽  
Michaela R Reagan ◽  
Yuji Mishima ◽  
...  

Abstract Background Glycosylation is a stepwise procedure of covalent attachment of oligosaccharide chains to proteins or lipids, and alterations in this process, especially increased sialylation, have been associated with malignant transformation and metastasis. The adhesion and trafficking of multiple myeloma (MM) cells is strongly influenced by glycosylation and multiple myeloma cells express a variety of adhesion molecules, including selectin ligands and integrins, which are typically dependent on glycosylation for their function. We have previously reported that the sialyltransferase ST3GAL6 is up-regulated in plasma cells from MM patients and that increased expression is associated with inferior overall survival (OS) in MM gene expression profiling (GEP) datasets. The functional significance of increased sialylation of MM cells has not previously been reported. Methods MM cell lines MM1s and RPMI-8226 were confirmed to have high expression levels of ST3GAL6 at the gene and protein level compared to healthy controls. Knockdown of ST3GAL6 was confirmed in MM cell lines RPMI-8226 and MM1s using lentiviral shRNAs targeting different regions in the ST3GAL6 mRNA. Specific ST3GAL6 knockdown was confirmed by reduced ST3GAL6 mRNA and protein expression in comparison to a scrambled control. In a calcein-AM fluorescence based adhesion assay we next evaluated the effects of ST3GAL6 knockdown on MM-cell adhesion to bone marrow stromal cells (BMSC’s) and fibronectin coated plates. Migration to 30nM SDF1-α was assessed using transwell plates comparing ST3GAL6 knockdown cells to scrambled controls. The commercially available sialyltransferase inhibitor 3Fax-Neu5Ac was used to pre-treat MM cells in vitro prior to assessment of apoptosis by flow cytometry. shST3GAL6 MM1s cells positive for green fluorescent protein and luciferin (GFP-Luc+) were injected into tail veins of SCID-Bg mice (5x106 cells, n=5/group) and mice were followed weekly using bioluminescent imaging (BLI) for tumor development. Bone marrow homing of tumor cells was assessed using in vivoconfocal imaging of the skull vasculature (n=3/group). Results Knockdown of ST3GAL6 in MM cell lines resulted in a 50% reduction in cell surface staining with the monoclonal antibody HECA-452. This indicated reduced expression of cutaneous lymphocyte associated antigen (CLA), a carbohydrate domain shared by sialyl Lewis X (sLex) and sialyl Lewis a (sLea) antigens, confirming suppression of ST3GAL6 activity. There was a significant reduction in the ability of knockdown cells to adhere to BMSC’s and fibronectin in-vitro compared to scrambled controls (P=0.016, 0.032 respectively). Migration ability of these cells in response to SDF1-α was also reduced (P=0.01). In vivo in a xenograft SCID-Bg mouse model shST3GAL6 cells demonstrated a reduced tumor burden as assessed by weekly BLI (P=0.017 at week 4). A consolidated map of the skull bone marrow niche in mice injected with shST3GAL6 MM1s GFP-Luc+ cells revealed a reduced homing ability of these cells in comparison to mice injected with scrambled control cells. Treatment of the MM cell lines MM1s and RPMI-8226 with a sialyltransferase inhibitor 3Fax-Neu5Ac resulted in almost complete elimination of cell surface sLex and/or sLea expression as determined by HECA-452 staining. Following pre-treatment with 3Fax-Neu5Ac, MM1S cells grown in co-culture with BMSC’s cells showed increased sensitivity to Bortezomib compared to cells treated with bortezomib alone. Conclusions shRNA knockdown of ST3GAL6 in MM cells significantly inhibits adhesion and migration in vitro with reduced homing and proliferation potential in vivo. In conjunction with the results of enzymatic inhibition this indicates that sialylation may play an important role in the malignant behavior of MM cells. Studies are ongoing to address the potential role of altered glycosylation in MM. Disclosures: Ghobrial: Onyx: Advisoryboard Other; BMS: Advisory board, Advisory board Other, Research Funding; Noxxon: Research Funding; Sanofi: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 870-870
Author(s):  
Evelyn Hutterer ◽  
Elisabeth Hinterseer ◽  
Sylvia Ganghammer ◽  
Gabriele Brachtl ◽  
Daniela Asslaber ◽  
...  

Abstract Trisomy 12 (tri12) is a frequent chromosomal aberration in chronic lymphocytic leukemia (CLL) associated with atypical cell morphology, high in vivo tumor proliferation activity and a predisposition to Richter’s transformation. Tri12 harboring CLL cells express increased levels of the negative prognostic marker CD49d, the α4 subunit of the integrin very late antigen 4 (VLA-4), which we previously identified as a key regulator of CLL cell homing to bone marrow (BM). During this process, inside-out activation of VLA-4 upon CXCR4 binding to endothelially displayed CXCL12 is thought to upregulate the adhesive properties of VLA-4 and augment the arrest of CLL cells on the VCAM-1 presenting vessels. Here, we investigated the functional interplay of VLA-4 and CXCR4 in CLL carrying tri12. We first found that the upregulation of CD49d expression in this subset (MFIR CD49d 9.8±5.3 (n=22) vs. 2.7±3.9 (n=126), p<0.0001) was paralleled by their reduced CXCR4 expression (MFIR CXCR4 11.8±7.2 (n=22) vs. 22.7±14.2 (n=126), p=0.0003). Using short term adoptive transfers, we compared the ability of tri12 and no tri12 CLL cells to home to the BM of NOD/SCID mice. 5-10x106 CLL cells were injected into tail vein and homing was evaluated after 3 hours. Based on their more frequent CD49d high phenotype, we observed increased homing rates (homed human CLL cells per 106 injected cells per 106 acquired murine cells) of tri12 compared to no tri12 CLL (225±160 (n=7) vs. 90±117 (n=20), p=0.025). However, when comparing CD49d+ tri12 and CD49d+ no tri12 subsets, we did not observe any significant differences in their homing capacity. To further study CXCL12/CXCR4 function in BM homing, we pretreated mice with either the novel CXCL12 antagonist NOX-A12 or the CXCR4 inhibitor AMD3100 prior to CLL cell injection. While homing of no tri12 CLL cells (n=3, in duplicates) was reduced by both pretreatments (homing rates 137 vs 38 vs 30), the homing capacity of tri12 CLL cells (n=3, in duplicates) was not affected. We next tested whether VLA-4 expressed on these cells was able to undergo CXCL12-induced activation and support cell arrest under shear conditions. To this end, we perfused CLL cells over VCAM-1 or VCAM-1/CXCL12 substrates and analyzed rates and categories of cell tethering at a single cell level by videomicroscopy. CXCL12 induced the arrests of no tri12 CLL cells (n=3) on VCAM-1 under shear flow in a CXCR4 and VLA-4 dependent manner. In contrast, tri12 CLL cells (n=3) robustly tethered to VCAM-1 in the absence of the chemokine, and interactions could not be further enhanced by additional CXCL12 nor could they be abrogated by use of AMD3100. This failure of CXCR4-induced adhesion was not based on a general defect in CXCR4 functionality as in vitro chemotaxis of tri12 CLL cells (n=5) towards CXCL12 was fully maintained. To detect potential differences in VLA-4 affinity regulation, we used a conformationally sensitive antibody that recognizes epitopes induced by VLA-4 ligation, and an LDV-containing VLA-4 specific ligand to probe resting integrin affinity. Also, we used a small fluorescent ligand to study rapid VLA-4 affinity changes during inside-out chemokine induced activation. On resting tri12 CLL, VLA-4 exhibited an affinity state similar to that observed on circulating lymphocytes, and tri12 CLL cells failed to undergo the rapid affinity up-regulation triggered by CXCL12 pretreatment, in keeping with tethering experiments. Next, we investigated whether the tumor microenvironment has a different influence on the behavior of the tri12 subset. Therefore we subjected the cells to in vitro co-cultures mimicking the lymphoid proliferation centers. Basal levels of the early activation marker CD69 were similar in tri12 CLL compared to no tri12 cases. Tri12 CLL, however, underwent stronger activation when cultured in presence of accessory cells (%CD69+ cells 60.0±18.5 (n=4) vs. 17.7±20.1 (n=19), p=0.008). Moreover, in several setups, proliferation rates of these cells were increased, irrespective of the proliferative stimulus and detection method used. In summary, our results provide a mechanistical basis at least in part explaining the peculiar and clinical features of the tri12 CLL subset. In light of the specific migratory and proliferative properties of tri12 cells and novel agents targeting particularly these functions, our findings may also imply therapeutical consequences. Disclosures: Greil: NOXXON Pharma AG: Research Funding. Hartmann:NOXXON Pharma AG: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document