scholarly journals Engineering deformation-free plastic spiral inertial microfluidic system for CHO cell clarification in biomanufacturing

Lab on a Chip ◽  
2022 ◽  
Author(s):  
Hyungkook Jeon ◽  
Taehong Kwon ◽  
Junghyo Yoon ◽  
Jongyoon Han

Inertial microfluidics has enabled many impactful high throughput applications. However, devices fabricated in soft elastomer (i.e., polydimethylsiloxane (PDMS)) suffer reliability issues due to significant deformation generated by the high pressure...

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Omar Nassar ◽  
Mazin Jouda ◽  
Michael Rapp ◽  
Dario Mager ◽  
Jan G. Korvink ◽  
...  

AbstractA novel approach for automated high throughput NMR spectroscopy with improved mass-sensitivity is accomplished by integrating microfluidic technologies and micro-NMR resonators. A flow system is utilized to transport a sample of interest from outside the NMR magnet through the NMR detector, circumventing the relatively vast dead volume in the supplying tube by loading a series of individual sample plugs separated by an immiscible fluid. This dual-phase flow demands a real-time robust sensing system to track the sample position and velocities and synchronize the NMR acquisition. In this contribution, we describe an NMR probe head that possesses a microfluidic system featuring: (i) a micro saddle coil for NMR spectroscopy and (ii) a pair of interdigitated capacitive sensors flanking the NMR detector for continuous position and velocity monitoring of the plugs with respect to the NMR detector. The system was successfully tested for automating flow-based measurement in a 500 MHz NMR system, enabling high resolution spectroscopy and NMR sensitivity of 2.18 nmol s1/2 with the flow sensors in operation. The flow sensors featured sensitivity to an absolute difference of 0.2 in relative permittivity, enabling distinction between most common solvents. It was demonstrated that a fully automated NMR measurement of nine individual 120 μL samples could be done within 3.6 min or effectively 15.3 s per sample.


Lab on a Chip ◽  
2022 ◽  
Author(s):  
Nan Xiang ◽  
Zhonghua Ni

On-chip concentration of rare malignant tumor cells (MTCs) in malignant pleural effusions (MPEs) with a large volume is challenging. Previous microfluidic concentrators suffer from a low concentration factor (CF) and...


Author(s):  
Derek S. Samarian ◽  
Nicholas S. Jakubovics ◽  
Ting L. Luo ◽  
Alexander H. Rickard

2021 ◽  
Vol 22 (18) ◽  
pp. 9896
Author(s):  
Eugenia Romano ◽  
Paolo Antonio Netti ◽  
Enza Torino

In recent decades, endogenous nanocarrier-exosomes have received considerable scientific interest as drug delivery systems. The unique proteo-lipid architecture allows the crossing of various natural barriers and protects exosomes cargo from degradation in the bloodstream. However, the presence of this bilayer membrane as well as their endogenous content make loading of exogenous molecules challenging. In the present work, we will investigate how to promote the manipulation of vesicles curvature by a high-pressure microfluidic system as a ground-breaking method for exosomes encapsulation. Exosomes isolated from Uppsala 87 Malignant Glioma (U87-MG) cell culture media were characterized before and after the treatment with high-pressure homogenization. Once their structural and biological stability were validated, we applied this novel method for the encapsulation in the lipidic exosomal bilayer of the chemotherapeutic Irinotecan HCl Trihydrate-CPT 11. Finally, we performed in vitro preliminary test to validate the nanobiointeraction of exosomes, uptake mechanisms, and cytotoxic effect in cell culture model.


2018 ◽  
Vol 275 ◽  
pp. 201-207 ◽  
Author(s):  
Bongseop Kwak ◽  
Yoohwan Lee ◽  
Jaehun Lee ◽  
Sungwon Lee ◽  
Jiseok Lim

2016 ◽  
Vol 113 (52) ◽  
pp. 14915-14920 ◽  
Author(s):  
Yih Yang Chen ◽  
Pamuditha N. Silva ◽  
Abdullah Muhammad Syed ◽  
Shrey Sindhwani ◽  
Jonathan V. Rocheleau ◽  
...  

On-chip imaging of intact three-dimensional tissues within microfluidic devices is fundamentally hindered by intratissue optical scattering, which impedes their use as tissue models for high-throughput screening assays. Here, we engineered a microfluidic system that preserves and converts tissues into optically transparent structures in less than 1 d, which is 20× faster than current passive clearing approaches. Accelerated clearing was achieved because the microfluidic system enhanced the exchange of interstitial fluids by 567-fold, which increased the rate of removal of optically scattering lipid molecules from the cross-linked tissue. Our enhanced clearing process allowed us to fluorescently image and map the segregation and compartmentalization of different cells during the formation of tumor spheroids, and to track the degradation of vasculature over time within extracted murine pancreatic islets in static culture, which may have implications on the efficacy of beta-cell transplantation treatments for type 1 diabetes. We further developed an image analysis algorithm that automates the analysis of the vasculature connectivity, volume, and cellular spatial distribution of the intact tissue. Our technique allows whole tissue analysis in microfluidic systems, and has implications in the development of organ-on-a-chip systems, high-throughput drug screening devices, and in regenerative medicine.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 297 ◽  
Author(s):  
Kena Song ◽  
Guoqiang Li ◽  
Xiangyang Zu ◽  
Zhe Du ◽  
Liyu Liu ◽  
...  

Microfluidic systems have been widely explored based on microfluidic technology, and it has been widely used for biomedical screening. The key parts are the fabrication of the base scaffold, the construction of the matrix environment in the 3D system, and the application mechanism. In recent years, a variety of new materials have emerged, meanwhile, some new technologies have been developed. In this review, we highlight the properties of high throughput and the biomedical application of the microfluidic chip and focus on the recent progress of the fabrication and application mechanism. The emergence of various biocompatible materials has provided more available raw materials for microfluidic chips. The material is not confined to polydimethylsiloxane (PDMS) and the extracellular microenvironment is not limited by a natural matrix. The mechanism is also developed in diverse ways, including its special physical structure and external field effects, such as dielectrophoresis, magnetophoresis, and acoustophoresis. Furthermore, the cell/organ-based microfluidic system provides a new platform for drug screening due to imitating the anatomic and physiologic properties in vivo. Although microfluidic technology is currently mostly in the laboratory stage, it has great potential for commercial applications in the future.


Sign in / Sign up

Export Citation Format

Share Document