Coupled thermo-mechanical sticking-sliding friction model along tool-chip interface in diamond cutting of copper

2021 ◽  
Vol 70 ◽  
pp. 578-592
Author(s):  
Shiquan Liu ◽  
Haijun Zhang ◽  
Liang Zhao ◽  
Guo Li ◽  
Chunyu Zhang ◽  
...  
2006 ◽  
Vol 113 ◽  
pp. 334-338
Author(s):  
Z. Dreija ◽  
O. Liniņš ◽  
Fr. Sudnieks ◽  
N. Mozga

The present work deals with the computation of surface stresses and deformation in the presence of friction. The evaluation of the elastic-plastic contact is analyzed revealing three distinct stages that range from fully elastic through elastic-plastic to fully plastic contact interface. Several factors of sliding friction model are discussed: surface roughness, mechanical properties and contact load and areas that have strong effect on the friction force. The critical interference that marks the transition from elastic to elastic- plastic and plastic deformation is found out and its connection with plasticity index. A finite element program for determination contact analysis of the assembled details and due to details of deformation that arose a normal and tangencial stress is used.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1428
Author(s):  
Shengguang Zhu ◽  
Liyong Ni

Previous research on friction calculation models has mainly focused on static friction, whereas sliding friction calculation models are rarely reported. In this paper, a novel sliding friction model for realizing a dry spherical flat contact with a roughness effect at the micro/nano scale is proposed. This model yields the sliding friction by the change in the periodic substrate potential, adopts the basic assumptions of the Greenwood–Williamson random contact model about asperities, and assumes that the contact area between a rigid sphere and a nominal rough flat satisfies the condition of interfacial friction. It subsequently employs a statistical method to determine the total sliding friction force, and finally, the feasibility of this model presented is verified by atomic force microscopy friction experiments. The comparison results show that the deviations of the sliding friction force and coefficient between the theoretical calculated values and the experimental values are in a relatively acceptable range for the samples with a small plasticity index (Ψ ≤ 1).


1987 ◽  
Vol 109 (3) ◽  
pp. 537-543 ◽  
Author(s):  
Peter J. Blau

The mathematical framework for a sliding friction model for run-in and other tribological transitions is presented. The semiempirical model was developed to portray the commonly observed shapes, durations, and variations in kinetic friction coefficient versus sliding time curves. Terms in the model involve material properties and physical interface conditions such as transfer, debris accumulation, and surface roughness. The forms of individual terms are adjustable through the use of systemspecific scaling parameters in order to provide enough modeling flexibility to treat a variety of possible tribological conditions. Effects of such conditions as lubrication efficiency loss over time, and temperature build-up can be incorporated by modification of appropriate terms. Illustrative plots using the framework with several combined contributions are compared with experimental data from previous work. The basic framework of the model can be further developed to incorporate sub-models for specific sliding friction contributions and, in so doing, reduce the number of empirical system parameters required to model actual tribosystem behavior.


2013 ◽  
Vol 456 ◽  
pp. 320-323 ◽  
Author(s):  
Le Wang ◽  
Bin Tang ◽  
Yuan Yang Zhao

The paper presents a comprehensive friction model of reciprocating compressor which is able to evaluate friction losses in moving parts. The model consists of crankshaft, connecting rod and piston all supported by bearings as well as the piston ring/cylinder interface viewed as sliding friction. Hydrodynamic lubrication theory reveals relationship between load and friction coefficient and was demonstrated to be helpful to give insight to the lubrication characteristics of journal bearing. The model gave the composition of friction losses, friction coefficient dynamic change with orbiting angle and effect of oil viscosity on compressor performance. The results showed that the friction losses of piston ring/cylinder interface and the rod big end bearing was most part of the friction losses and it was necessary to choose suitable oil viscosity to reach the optimum compressor performance.


2013 ◽  
Vol 345 ◽  
pp. 167-171 ◽  
Author(s):  
Xiao Jing Yang ◽  
Xiao Jiang Yang

Using LAMMPS to establish the three-dimensional sliding friction model of the nanoscale diamond hemisphere with the single-crystal copper surface. Simulation and solving the process of sliding friction, research the micro-contact area atomic states change in sliding friction process, and study the friction characteristics change when the rigid sphere sliding on rough surface of the single crystal copper with minute projections. The results indicate that, in the sliding friction process, the lattice of substrate atoms are damaged under the forces of the extrusion which also cause corresponding dislocation and deformation. In the direction of the hemisphere movement, generate the pileup and side stream phenomena, and produce furrows. Friction and normal force rapidly increase with the depth of contact, and then enter into a stable sliding phase. For the thermal motion of atoms, formation of dislocations and the stick-slip effect, the curves of friction and normal force present waves of sawtooth. Small defect on surface of the substrate almost have no effect on the process of sliding friction.


Author(s):  
Andris Martinovs ◽  
Vladimir Gonca

Paper analyses the sliding friction coefficient of rubber on concrete, timber and ceramic tile surfaces depending on the weight of the sliding object and contact surface area. It has been established that increase in the weight of the object makes sliding friction coefficient to grow. In the case of increase in size of contact area, sliding friction coefficient between rubber and concrete also increases, but it decreases between rubber- timber and rubber- tile. The mathematical model for description of sliding friction process has been developed which can be used to determine optimal surface area and a pattern as well as optimal weight of the sliding object in order to provide sufficient sliding friction. Model has five independent constants. It includes the contact surface area, the weight and the velocity of the sliding object, sliding friction coefficient, temperature and time.


Lubricants ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 96 ◽  
Author(s):  
Can Wang ◽  
Dik Schipper

In this study, a sliding friction model for coated single asperity contacts is proposed. A displacement-driven layered contact algorithm is firstly introduced and verified by the finite element method. Then, this algorithm is applied to simulate the contact between two semispherical asperities. The full sliding contact process is discretized into a series of transient steps, and each of these steps are calculated by the displacement-driven contact algorithm. The effects of the interference depth and the properties of, respectively, the tribofilm (thickness, elastic modulus, and yield strength) and the nanocrystalline layer on the sliding coefficient of friction are investigated. The results suggest that when surface adhesion and asperity damage are ignored, the plastic deformation of the tribofilm is the main source of the sliding friction. Greater interference depth, tribofilm with greater thickness, higher elastic modulus or lower yield strength, and the presence of a nanocrystalline layer will lead to a higher coefficient of friction in single asperity sliding.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Lingwei Zhong ◽  
Haijun Wang ◽  
Xuhua Ren ◽  
Lei Tang

Deformation rate analysis utilizes deformation memory effect (DME) that is one of the fundamental properties of rock, to estimate in situ stress underground. It could be influenced by the stress history which has been subjected to in the past. To understand the influence under the cyclic loading path, in the experimental study, different stress levels were applied on sandstone samples and two types of granite samples. In the theoretical investigation, the sliding friction model consisting of multiple microstructure surfaces is considered in this paper. Both experiments and the theoretical model show that when the number of cyclic loading times keeps increasing, (1) the stress read at the DRA inflection is getting closer to the previously cyclic stress; (2) the angle at the DRA inflection becomes sharper, which gives clearer inflection point; and (3) the strain differential amplitude in the DRA curve gradually decreases and then toward a stable value. An upper limit exists for influence, indicating that the best cyclic loading times occur when the pulse amplitude of the strain differential stops changing. It is confirmed that the multiple cyclic loading method provides a better outcome for experiment using artificial preload when DME is utilized for stress reconstruction. Without other factors disturbing, the memory information of the in situ stress would hardly lose under the history of cyclic loading.


Sign in / Sign up

Export Citation Format

Share Document