large gtpases
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Ana Katic ◽  
Dario Hüsler ◽  
François Letourneur ◽  
Hubert Hilbi

The haploid social amoeba Dictyostelium discoideum is a powerful model organism to study vesicle trafficking, motility and migration, cell division, developmental processes, and host cell-pathogen interactions. Dynamin superfamily proteins (DSPs) are large GTPases, which promote membrane fission and fusion, as well as membrane-independent cellular processes. Accordingly, DSPs play crucial roles for vesicle biogenesis and transport, organelle homeostasis, cytokinesis and cell-autonomous immunity. Major progress has been made over the last years in elucidating the function and structure of mammalian DSPs. D. discoideum produces at least eight DSPs, which are involved in membrane dynamics and other processes. The function and structure of these large GTPases has not been fully explored, despite the elaborate genetic and cell biological tools available for D. discoideum. In this review, we focus on the current knowledge about mammalian and D. discoideum DSPs, and we advocate the use of the genetically tractable amoeba to further study the role of DSPs in cell and infection biology. Particular emphasis is put on the virulence mechanisms of the facultative intracellular bacterium Legionella pneumophila.


2021 ◽  
Vol 118 (15) ◽  
pp. e2022269118
Author(s):  
Wen Cui ◽  
Elisabeth Braun ◽  
Wei Wang ◽  
Jinhong Tang ◽  
Yanyan Zheng ◽  
...  

Guanylate-binding proteins (GBPs) form a family of dynamin-related large GTPases which mediate important innate immune functions. They were proposed to form oligomers upon GTP binding/hydrolysis, but the molecular mechanisms remain elusive. Here, we present crystal structures of C-terminally truncated human GBP5 (hGBP51–486), comprising the large GTPase (LG) and middle (MD) domains, in both its nucleotide-free monomeric and nucleotide-bound dimeric states, together with nucleotide-free full-length human GBP2. Upon GTP-loading, hGBP51–486 forms a closed face-to-face dimer. The MD of hGBP5 undergoes a drastic movement relative to its LG domain and forms extensive interactions with the LG domain and MD of the pairing molecule. Disrupting the MD interface (for hGBP5) or mutating the hinge region (for hGBP2/5) impairs their ability to inhibit HIV-1. Our results point to a GTP-induced dimerization mode that is likely conserved among all GBP members and provide insights into the molecular determinants of their antiviral function.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Cedric S. Tremblay ◽  
Sung Kai Chiu ◽  
Jesslyn Saw ◽  
Hannah McCalmont ◽  
Veronique Litalien ◽  
...  

AbstractIntensive chemotherapy for acute leukemia can usually induce complete remission, but fails in many patients to eradicate the leukemia stem cells responsible for relapse. There is accumulating evidence that these relapse-inducing cells are maintained and protected by signals provided by the microenvironment. Thus, inhibition of niche signals is a proposed strategy to target leukemia stem cells but this requires knowledge of the critical signals and may be subject to compensatory mechanisms. Signals from the niche require receptor-mediated endocytosis, a generic process dependent on the Dynamin family of large GTPases. Here, we show that Dynole 34-2, a potent inhibitor of Dynamin GTPase activity, can block transduction of key signalling pathways and overcome chemoresistance of leukemia stem cells. Our results provide a significant conceptual advance in therapeutic strategies for acute leukemia that may be applicable to other malignancies in which signals from the niche are involved in disease progression and chemoresistance.


2020 ◽  
Vol 3 (5) ◽  
pp. e201900527 ◽  
Author(s):  
Nyssa B Samanas ◽  
Emily A Engelhart ◽  
Suzanne Hoppins

Mitofusins are members of the dynamin-related protein family of large GTPases that harness the energy from nucleotide hydrolysis to remodel membranes. Mitofusins possess four structural domains, including a GTPase domain, two extended helical bundles (HB1 and HB2), and a transmembrane region. We have characterized four Charcot-Marie-Tooth type 2A–associated variants with amino acid substitutions in Mfn2 that are proximal to the hinge that connects HB1 and HB2. A functional defect was not apparent in cells as the mitochondrial morphology of Mfn2-null cells was restored by expression of any of these variants. However, a significant fusion deficiency was observed in vitro, which was improved by the addition of crude cytosol extract or soluble Bax. All four variants had reduced nucleotide-dependent assembly in cis, but not trans, and this was also improved by the addition of Bax. Together, our data demonstrate an important role for this region in Mfn2 GTP-dependent oligomerization and membrane fusion and is consistent with a model where cytosolic factors such as Bax are masking molecular defects associated with Mfn2 disease variants in cells.


2019 ◽  
Vol 3 (1) ◽  
pp. e201900476 ◽  
Author(s):  
Ramona Schuster ◽  
Vincent Anton ◽  
Tânia Simões ◽  
Selver Altin ◽  
Fabian den Brave ◽  
...  

Mitochondria are essential organelles whose function is upheld by their dynamic nature. This plasticity is mediated by large dynamin-related GTPases, called mitofusins in the case of fusion between two mitochondrial outer membranes. Fusion requires ubiquitylation, attached to K398 in the yeast mitofusin Fzo1, occurring in atypical and conserved forms. Here, modelling located ubiquitylation to α4 of the GTPase domain, a critical helix in Ras-mediated events. Structure-driven analysis revealed a dual role of K398. First, it is required for GTP-dependent dynamic changes of α4. Indeed, mutations designed to restore the conformational switch, in the absence of K398, rescued wild-type-like ubiquitylation on Fzo1 and allowed fusion. Second, K398 is needed for Fzo1 recognition by the pro-fusion factors Cdc48 and Ubp2. Finally, the atypical ubiquitylation pattern is stringently required bilaterally on both involved mitochondria. In contrast, exchange of the conserved pattern with conventional ubiquitin chains was not sufficient for fusion. In sum, α4 lysines from both small and large GTPases could generally have an electrostatic function for membrane interaction, followed by posttranslational modifications, thus driving membrane fusion events.


2019 ◽  
Author(s):  
N.B. Samanas ◽  
E.A. Engelhart ◽  
S. Hoppins

ABSTRACTMitofusins are members of the dynamin-related protein family, large GTPases that harness the energy from nucleotide hydrolysis to remodel membranes. Mitofusins possess four structural domains including two extended helical bundles that are connected by a flexible linker. The role of this linker (Hinge 1) in mitofusin-mediated membrane fusion is not well understood. We have characterized four variants with amino acid substitutions within this region of Mfn2. While a defect was not apparent in cells, a fusion deficiency was observed in vitro, and was rescued by the addition of cytosolic fraction. All four variants had decreased nucleotide-dependent assembly, which was improved by the addition of Bax. Assembly of mitofusins across two membranes was unaffected as formation of the trans complex was similar to wild type for all variants. We further demonstrate that variants with substitutions in both helical bundles are more severely impaired than any single mutant, suggesting that both helical bundles contribute to this function. Our data are consistent with a model where this region contributes to conformational changes that are important for assembly.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Tobias Brandt ◽  
Laetitia Cavellini ◽  
Werner Kühlbrandt ◽  
Mickaël M Cohen

Fusion of mitochondrial outer membranes is crucial for proper organelle function and involves large GTPases called mitofusins. The discrete steps that allow mitochondria to attach to one another and merge their outer membranes are unknown. By combining an in vitro mitochondrial fusion assay with electron cryo-tomography (cryo-ET), we visualize the junction between attached mitochondria isolated from Saccharomyces cerevisiae and observe complexes that mediate this attachment. We find that cycles of GTP hydrolysis induce progressive formation of a docking ring structure around extended areas of contact. Further GTP hydrolysis triggers local outer membrane fusion at the periphery of the contact region. These findings unravel key features of mitofusin-dependent fusion of outer membranes and constitute an important advance in our understanding of how mitochondria connect and merge.


2015 ◽  
Vol 26 (17) ◽  
pp. 3104-3116 ◽  
Author(s):  
Natalia Stepanyants ◽  
Patrick J. Macdonald ◽  
Christopher A. Francy ◽  
Jason A. Mears ◽  
Xin Qi ◽  
...  

Cardiolipin (CL) is an atypical, dimeric phospholipid essential for mitochondrial dynamics in eukaryotic cells. Dynamin-related protein 1 (Drp1), a cytosolic member of the dynamin superfamily of large GTPases, interacts with CL and functions to sustain the balance of mitochondrial division and fusion by catalyzing mitochondrial fission. Although recent studies have indicated a role for CL in stimulating Drp1 self-assembly and GTPase activity at the membrane surface, the mechanism by which CL functions in membrane fission, if at all, remains unclear. Here, using a variety of fluorescence spectroscopic and imaging approaches together with model membranes, we demonstrate that Drp1 and CL function cooperatively in effecting membrane constriction toward fission in three distinct steps. These involve 1) the preferential association of Drp1 with CL localized at a high spatial density in the membrane bilayer, 2) the reorganization of unconstrained, fluid-phase CL molecules in concert with Drp1 self-assembly, and 3) the increased propensity of CL to transition from a lamellar, bilayer arrangement to an inverted hexagonal, nonbilayer configuration in the presence of Drp1 and GTP, resulting in the creation of localized membrane constrictions that are primed for fission. Thus we propose that Drp1 and CL function in concert to catalyze mitochondrial division.


Sign in / Sign up

Export Citation Format

Share Document