scholarly journals Optimizing breeding strategy of Melaleuca cajuputi subsp. cajuputi for a multiple-trait selection: considering the economic weight of traits for oil yield productivity

2021 ◽  
Vol 914 (1) ◽  
pp. 012004
Author(s):  
N K Kartikawati ◽  
A Nirsatmanto ◽  
A Rimbawanto ◽  
Sumardi ◽  
Prastyono

Abstract Melaleuca cajuputi breeding in Indonesia is entering the advanced generation cycle and improvements have been achieved for oil concentration and 1.8 cineole-content. In commercial plantations, the total oil yield is an important factor to ensure the sustainability and continuity of oil production. This variable is calculated based on oil concentration, survival rate, and leaf biomass. However, to date, biomass productivity is maintained through silviculture practices rather than genetics. Therefore, genetic improvement for other traits related to leaf biomass is necessary. This study aimed to optimize the breeding strategy of M. cajuputi for a multiple-trait selection using the economic weight of traits related to oil yield. The economic weight was derived by combining selection results in the past generation breeding population and the assessment in genetic gain trials. The study revealed that leaf biomass should be prioritized as selection criteria for oil concentration in the advanced generation breeding based on the current baseline of the achieved gain. The implication of the economic weight to further generation breeding selection for improving oil yield productivity is that the major traits affecting the oil yield should be incorporated simultaneously for selection in the breeding strategy of M. cajuputi. The leaves biomass could be more weighted than other traits in constructing the index for the multiple-trait selection considering the correlation among the three traits observed.

2014 ◽  
Vol 8 (1) ◽  
pp. 9-17
Author(s):  
X. Chang ◽  
P. Martin

To investigate whether the fertilizers N, P or K individually affect plant growth, oil content and the gender of sweet gale, two trials, pot and field trials, were carried out at Orkney College UHI in Scotland. A pot trial was established with eight soils which were collected from different sweet gale trial sites in the north of Scotland. Although neither shoot yield nor oil concentration in shoots was affected by soil, there were significant differences in shoot yields as a result of fertilizer treatments (nitrogen (N), phosphorus (P), potassium (K) or none (control)). The best yield was obtained from the N treatment which was double to that of the control and P treatments. N, P or K fertilizers did not consistently affect shoot oil concentration in two seasons; however, oil yield was significantly affected, and N treatment produced two-three fold oil yield increases compared with the control or P treatment. In the N treatment, the increase in shoot yield was positively correlated with total nitrogen or nitrate nitrogen in the soil, suggesting the occurrence of a nitrogen priming effect. Data suggested that as shoot yield increased the oil concentration in shoots decreased. Neither soil nor N, P or K fertilizers had a significant effect on oil composition. Amongst fertilizer treatments, P resulted in the largest number of plants changing gender from female to male. A field N trial confirmed that nitrogen significantly enhanced the shoot yield of young plants.


2012 ◽  
Vol 42 (3) ◽  
pp. 355-362 ◽  
Author(s):  
Adriana Pellegrini Manhães ◽  
Valdir Florêncio da Veiga-Júnior ◽  
Larissa Silveira Moreira Wiedemann ◽  
Karenn Silveira Fernandes ◽  
Paulo de Tarso Barbosa Sampaio

Aniba canelilla (H.B.K.) Mez. is a tree species from Amazon that produces essential oil. The oil extraction from its leaves and stems can be an alternative way to avoid the tree cutting for production of essential oil. The aim of this study was to analyse factors that may influence the essential oil production and the biomass of resprouts after pruning the leaves and stems of A. canelilla trees. The tree crowns were pruned in the wet season and after nine months the leaves and stems of the remaining crown and the resprouts were collected, in the dry season. The results showed that the essential oil yield and chemical composition differed among the stems, leaves and resprouts. The stems' essential oil production differed between the seasons and had a higher production in the resprouting stems than the old stems of the remaining crown. The production of essential oil and leaf biomass of resprouts were differently related to the canopy openness, indicating that light increases the production of the essential oil and decreases the biomass of resprouting leaves. This study revealed that plant organs differ in their essential oil production and that the canopy openness must be taken into account when pruning the A. canelilla tree crown in order to achieve higher oil productivity.


2018 ◽  
Vol 124 (4) ◽  
pp. 521-529 ◽  
Author(s):  
Gancho T Slavov ◽  
Christopher L Davey ◽  
Maurice Bosch ◽  
Paul R H Robson ◽  
Iain S Donnison ◽  
...  

Abstract Background Miscanthus has potential as a biomass crop but the development of varieties that are consistently superior to the natural hybrid M. × giganteus has been challenging, presumably because of strong G × E interactions and poor knowledge of the complex genetic architectures of traits underlying biomass productivity and climatic adaptation. While linkage and association mapping studies are starting to generate long lists of candidate regions and even individual genes, it seems unlikely that this information can be translated into effective marker-assisted selection for the needs of breeding programmes. Genomic selection has emerged as a viable alternative, and prediction accuracies are moderate across a range of phenological and morphometric traits in Miscanthus, though relatively low for biomass yield per se. Methods We have previously proposed a combination of index selection and genomic prediction as a way of overcoming the limitations imposed by the inherent complexity of biomass yield. Here we extend this approach and illustrate its potential to achieve multiple breeding targets simultaneously, in the absence of a priori knowledge about their relative economic importance, while also monitoring correlated selection responses for non-target traits. We evaluate two hypothetical scenarios of increasing biomass yield by 20 % within a single round of selection. In the first scenario, this is achieved in combination with delaying flowering by 44 d (roughly 20 %), whereas, in the second, increased yield is targeted jointly with reduced lignin (–5 %) and increased cellulose (+5 %) content, relative to current average levels in the breeding population. Key Results In both scenarios, the objectives were achieved efficiently (selection intensities corresponding to keeping the best 20 and 4 % of genotypes, respectively). However, the outcomes were strikingly different in terms of correlated responses, and the relative economic values (i.e. value per unit of change in each trait compared with that for biomass yield) of secondary traits included in selection indices varied considerably. Conclusions Although these calculations rely on multiple assumptions, they highlight the need to evaluate breeding objectives and explicitly consider correlated responses in silico, prior to committing extensive resources. The proposed approach is broadly applicable for this purpose and can readily incorporate high-throughput phenotyping data as part of integrated breeding platforms.


1996 ◽  
Vol 47 (5) ◽  
pp. 817 ◽  
Author(s):  
GJ Murtagh ◽  
GR Smith

Changes in the concentration, composition, and yield of oil in coppice growth of tea tree (Melaleuca alternzfolia) were assessed when plants were harvested in different months. Oil concentrations in leaves were lower when plants were harvested in July-September than in other months, but biomass yields were higher. Consequently, there was no consistent effect of harvest month on oil yield. Oil yield varied as much between the same month in different years, as between months within a year. The oil concentration in one harvest was positively related to the biomass yield at the previous harvest of the same plants, suggesting that a carryover of energy reserves contributed to oil production. The oil concentration was also positively related to the mean air temperatures over the 3 months before harvest. The proportion of the economically significant compounds in oil, terpinen-4-01 and 1,8-cineole, was not affected by either the month of harvest or regrowth cycle, but other compounds did change. There was a significant loss of monoterpene olefins from oil which was present at high concentrations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Saqib Mahmood ◽  
Beenish Afzal ◽  
Shagufta Perveen ◽  
Abdul Wahid ◽  
Muhammad Azeem ◽  
...  

Water-scarce areas are continually increasing worldwide. This factor reduces the quantity and quality of crops produced in affected areas. Physical seed treatments are considered economical and ecofriendly solutions for such problems. It was hypothesized that a moderately drought-tolerant crop grown from seeds treated with a He-Ne laser utilizes water-limited conditions better than plants grown from untreated seeds. A field study was conducted, growing a moderately drought tolerant crop (sunflower) with supportive seed treatment (He-Ne laser treatment at 300 mJ) for 0, 1, 2, and 3 min. Thirty-day-old plants were subjected to two irrigation conditions: 100% (normal) and 50% (water stress). Harvesting was done at flowering (60-day-old plants) at full maturity. The sunflowers maintained growth and yield under water limitation with a reduced achene number. At 50%, irrigation, there was a reduction in chlorophyll a, a+b and a/b; catalase activity; soluble sugars; and anthocyanin, alongside elevated proline. The improved chlorophyll a, a+b and a/b; metabolisable energy; nutritional value; and yield in the plants grown from He-Ne-laser-treated seeds support our hypothesis. Seeds with 2-min exposure to a He-Ne laser performed best regarding leaf area; leaf number; leaf biomass; chlorophyll a, a+b and a/b; per cent oil yield; 50-achene weight; achene weight per plant; carotenoid content; and total soluble phenolic compound content. Thereafter, the leaves from the best performing level of treatment (2 min) were subjected to high-performance-liquid-chromatography-based phenolic profiling and gas-chromatography-based fatty acid profiling of the oil yield. The He-Ne laser treatment led to the accumulation of nutraceutical phenolic compounds and improved the unsaturated-to-saturated fatty acid ratio of the oil. In conclusion, 2-min He-Ne laser seed treatment could be the best strategy to improve the yield and nutritional value of sunflowers grown in water-limited areas.


2014 ◽  
Vol 139 (3) ◽  
pp. 253-260
Author(s):  
Mark E. Herrington ◽  
Craig Hardner ◽  
Malcolm Wegener ◽  
Louella Woolcock ◽  
Mark J. Dieters

The Queensland strawberry (Fragaria ×ananassa) breeding program in subtropical Australia aims to improve sustainable profitability for the producer. Selection must account for the relative economic importance of each trait and the genetic architecture underlying these traits in the breeding population. Our study used estimates of the influence of a trait on production costs and profitability to develop a profitability index (PI) and an economic weight (i.e., change in PI for a unit change in level of trait) for each trait. The economic weights were then combined with the breeding values for 12 plant and fruit traits on over 3000 genotypes that were represented in either the current breeding population or as progenitors in the pedigree of these individuals. The resulting linear combination (i.e., sum of economic weight × breeding value for all 12 traits) estimated the overall economic worth of each genotype as H, the aggregate economic genotype. H values were validated by comparisons among commercial cultivars and were also compared with the estimated gross margins. When the H value of ‘Festival’ was set as zero, the H values of genotypes in the pedigree ranged from –0.36 to +0.28. H was highly correlated (R2 = 0.77) with the year of selection (1945–98). The gross margins were highly linearly related (R2 > 0.98) to H values when the genotype was planted on less than 50% of available area, but the relationship was non-linear [quadratic with a maximum (R2 > 0.96)] when the planted area exceeded 50%. Additionally, with H values above zero, the variation in gross margin increased with increasing H values as the percentage of area planted to a genotype increased. High correlations among some traits allowed the omission of any one of three of the 12 traits with little or no effect on ranking (Spearman’s rank correlation 0.98 or greater). Thus, these traits may be dropped from the aggregate economic genotype, leading to either cost reductions in the breeding program or increased selection intensities for the same resources. H was efficient in identifying economically superior genotypes for breeding and deployment, but because of the non-linear relationship with gross margin, calculation of a gross margin for genotypes with high H is also necessary when cultivars are deployed across more than 50% of the available area.


2014 ◽  
Vol 139 (2) ◽  
pp. 87-98 ◽  
Author(s):  
Gennaro Fazio ◽  
Yizhen Wan ◽  
Dariusz Kviklys ◽  
Leticia Romero ◽  
Richard Adams ◽  
...  

The ability of certain apple rootstocks to dwarf their scions has been known for centuries and their use revolutionized apple (Malus ×domestica) production systems. In this investigation, several apple rootstock breeding populations, planted in multiple replicated field and pot experiments, were used to ascertain the degree of dwarfing when grafted with multiple scions. A previous genetic map of a breeding population derived from parents ‘Ottawa 3’ (O.3) and ‘Robusta 5’ (R5) was used for quantitative trait locus (QTL) analysis of traits related to scion vigor suppression, induction of early bearing, and other tree size measurements on own-rooted and grafted trees. The analysis confirmed a previously reported QTL that imparts vigor control [Dw1, log of odds (LOD) = 7.2] on linkage group (LG) 5 and a new QTL named Dw2 (LOD = 6.4) on LG11 that has a similar effect on vigor. The data from this population were used to study the interaction of these two loci. To validate these findings, a new genetic map comprised of 1841 single-nucleotide polymorphisms was constructed from a cross of the dwarfing, precocious rootstocks ‘Geneva 935’ (G.935) and ‘Budagovsky 9’ (B.9), resulting in the confirmation and modeling of the effect of Dw1 and Dw2 on vigor control of apple scions. Flower density and fruit yield data allowed the identification of genetic factors Eb1 (LOD = 7.1) and Eb2 (LOD = 7.6) that cause early bearing of scions, roughly colocated with the dwarfing factors. The major QTL for mean number of fruit produced per tree colocated with Dw2 (LOD = 7.0) and a minor QTL was located on LG16 (LOD = 3.5). These findings will aid the development of a marker-assisted breeding strategy, and the discovery of additional sources for dwarfing and predictive modeling of new apple rootstocks in the Geneva® apple rootstock breeding program.


2018 ◽  
Vol 10 (7) ◽  
pp. 359
Author(s):  
Joaquim Jose de Carvalho Carvalho ◽  
José Maria Rodrigues da Luz ◽  
Jaqueline Henrique ◽  
José Geraldo Delvaux Silva ◽  
Raphael Bragança Alves Fernandes ◽  
...  

Cattle slaughterhouses are potential causes the environmental impacts, as it require a large volume of water in meat processing, generate large effluents amount, and promote the Cerrado deforestation for animal husbandry. Therefore, we aim was carried out to assess the effects of the soil application of a green line wastewater from a cattle slaughterhouse in the Brachiaria brizantha growth. The M1 and M2 managements did not contain wastewater of slaughterhouse. The wastewater from the 3rd stabilization pond (M3 to M5), from reception box (M6 to M8), and manure (M9 and M10) were used in the biofertigation managements. The physical-chemical indicators levels did not show significant differences (p < 0.05) before soil preparation and after managements. However, biofertigation in the Cerrado soil can provide a mitigation of the leaching of fine soil particles and cations. In addition, maximum nitrogen dose of wastewater provided a higher leaf biomass productivity than commercial nitrogen. Thus, the fertigation with wastewater can reduce the use of water bodies to crops irrigation and the incorporation of new areas with native vegetation to the agricultural production systems.


Sign in / Sign up

Export Citation Format

Share Document