scholarly journals Mussel-inspired Coating of α-AlH3: A Compact Structure with Highly Enhanced Stability

Author(s):  
Mingna Qin ◽  
Bingjie Yao ◽  
Qiang Shi ◽  
Wang Tang ◽  
Shaoli Chen ◽  
...  

Abstract we present a novel surfacing coating to resolve the stability of α-AlH3. Inspired by the strong chemical adhesion of mussels, the polymerization of dopamine was first introduced to coat α-AlH3 through a simple situ polymerization. The α-AlH3 was used as a substrate. In-depth characterizations confirmed compact formation with PDA on α-AlH3 surface. The coated α-AlH3 sample was characterized by XRD XPS and SEM . The results show that a strong PDA film is formed on the surface of α-AlH3, the PDA@α-AlH3 retained primary morphology. The crystal form of α-AlH3 does not change after coated by PDA. The results of XPS analysis show that N1s appears on the material after coated by PDA, indicating that polydopamine is formed on the surface of α-AlH3. The moisture absorption tests show that the moisture absorption rate of α-AlH3 is greatly reduced after being coated with PDA. The excellent intact ability of PDA prevent α-AlH3 reacting with watered in the air. The thermal stability of α-AlH3 before and after coating was analyzed by DSC. This work demonstrates the successful applications of dopamine chemistry to α-AlH3, thereby providing a potential method for the metastable materials.

Author(s):  
Y. Feng ◽  
X. Y. Cai ◽  
R. J. Kelley ◽  
D. C. Larbalestier

The issue of strong flux pinning is crucial to the further development of high critical current density Bi-Sr-Ca-Cu-O (BSCCO) superconductors in conductor-like applications, yet the pinning mechanisms are still much debated. Anomalous peaks in the M-H (magnetization vs. magnetic field) loops are commonly observed in Bi2Sr2CaCu2Oy (Bi-2212) single crystals. Oxygen vacancies may be effective flux pinning centers in BSCCO, as has been found in YBCO. However, it has also been proposed that basal-plane dislocation networks also act as effective pinning centers. Yang et al. proposed that the characteristic scale of the basal-plane dislocation networksmay strongly depend on oxygen content and the anomalous peak in the M-H loop at ˜20-30K may be due tothe flux pinning of decoupled two-dimensional pancake vortices by the dislocation networks. In light of this, we have performed an insitu observation on the dislocation networks precisely at the same region before and after annealing in air, vacuumand oxygen, in order to verify whether the dislocation networks change with varying oxygen content Inall cases, we have not found any noticeable changes in dislocation structure, regardless of the drastic changes in Tc and the anomalous magnetization. Therefore, it does not appear that the anomalous peak in the M-H loops is controlled by the basal-plane dislocation networks.


2020 ◽  
Vol 90 (5-6) ◽  
pp. 439-447 ◽  
Author(s):  
Andrew Hadinata Lie ◽  
Maria V Chandra-Hioe ◽  
Jayashree Arcot

Abstract. The stability of B12 vitamers is affected by interaction with other water-soluble vitamins, UV light, heat, and pH. This study compared the degradation losses in cyanocobalamin, hydroxocobalamin and methylcobalamin due to the physicochemical exposure before and after the addition of sorbitol. The degradation losses of cyanocobalamin in the presence of increasing concentrations of thiamin and niacin ranged between 6%-13% and added sorbitol significantly prevented the loss of cyanocobalamin (p<0.05). Hydroxocobalamin and methylcobalamin exhibited degradation losses ranging from 24%–26% and 48%–76%, respectively; added sorbitol significantly minimised the loss to 10% and 20%, respectively (p < 0.05). Methylcobalamin was the most susceptible to degradation when co-existing with ascorbic acid, followed by hydroxocobalamin and cyanocobalamin. The presence of ascorbic acid caused the greatest degradation loss in methylcobalamin (70%-76%), which was minimised to 16% with added sorbitol (p < 0.05). Heat exposure (100 °C, 60 minutes) caused a greater loss of cyanocobalamin (38%) than UV exposure (4%). However, degradation losses in hydroxocobalamin and methylcobalamin due to UV and heat exposures were comparable (>30%). At pH 3, methylcobalamin was the most unstable showing 79% degradation loss, which was down to 12% after sorbitol was added (p < 0.05). The losses of cyanocobalamin at pH 3 and pH 9 (~15%) were prevented by adding sorbitol. Addition of sorbitol to hydroxocobalamin at pH 3 and pH 9 reduced the loss by only 6%. The results showed that cyanocobalamin was the most stable, followed by hydroxocobalamin and methylcobalamin. Added sorbitol was sufficient to significantly enhance the stability of cobalamins against degradative agents and conditions.


Author(s):  
Aditi Rathee ◽  
Anil Panwar ◽  
Seema Kumari ◽  
Sanjay Chhibber ◽  
Ashok Kumar

Introduction:: Enzymatic degradation of peptidoglycan, a structural cell wall component of Gram-positive bacteria, has attracted considerable attention being a specific target for many known antibiotics. Methods:: Peptidoglycan hydrolases are involved in bacterial lysis through peptidoglycan degradation. β-N-acetylglucosaminidase, a peptidoglycan hydrolase, acts on O-glycosidic bonds formed by N-acetylglucosamine and N-acetyl muramic acid residues of peptidoglycan. Aim of present study was to study the action of β-N-acetylglucosaminidase, on methicillin- resistant Staphylococcus aureus (MRSA) and other Gram-negative bacteria. Results:: We investigated its dynamic behaviour using molecular dynamics simulation and observed that serine and alanine residues are involved in catalytic reaction in addition to aspartic acid, histidine, lysine and arginine residues. When simulated in its bound state, the RMSD values were found lesser than crystal form in the time stamp of 1000 picoseconds revealing its stability. Structure remained stably folded over 1000 picoseconds without undergoing any major change further confirming the stability of complex. Conclusion:: It can be concluded that enzymes belonging to this category can serve as a tool in eradicating Gram-positive pathogens and associated infections.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3567
Author(s):  
Faiza Faiza ◽  
Abraiz Khattak ◽  
Safi Ullah Butt ◽  
Kashif Imran ◽  
Abasin Ulasyar ◽  
...  

Silicone rubber is a promising insulating material that has been performing well for different insulating and dielectric applications. However, in outdoor applications, environmental stresses cause structural and surface degradations that diminish its insulating properties. This effect of degradation can be reduced with the addition of a suitable filler to the polymer chains. For the investigation of structural changes and hydrophobicity four different systems were fabricated, including neat silicone rubber, a micro composite (with 15% micro-silica filler), and nanocomposites (with 2.5% and 5% nanosilica filler) by subjecting them to various hydrothermal conditions. In general, remarkable results were obtained by the addition of fillers. However, nanocomposites showed the best resistance against the applied stresses. In comparison to neat silicone rubber, the stability of the structure and hydrophobic behavior was better for micro-silica, which was further enhanced in the case of nanocomposites. The inclusion of 5% nanosilica showed the best results before and after applying aging conditions.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1654
Author(s):  
Bo Wang ◽  
Shuangdan Mao ◽  
Fuhua Lin ◽  
Mi Zhang ◽  
Yuying Zhao ◽  
...  

Isotactic poly (1-butene) (iPB) has excellent properties which are recognized as a green and energy saving product. However, the most stable and valuable crystal form I had a spontaneous transformation that took as long as seven days to complete. As a special solid waste, the herb residue (HR) is rich in cellulose which has great potential to accelerate the crystal transformation of the iPB. However, the polarity of HR results in the interface compatibility with non-polar iPB. In this study, the HR was modified by silane coupling agent (KH570) to obtain KHR and the iPB/HR composite was prepared. The FTIR spectrum was indicated that the organic functional groups of KH570 successfully graft onto the surface of HR and the water contact angle test was indicated that the hydrophilicity of the KHR was greatly decreased. The complete crystal transformation time is 7 days for iPB, 6 days for iPB+5% HR but only 3 days for iPB+5% KHR. The addition of the HR and KHR improve the thermal stability of the composite and this beneficial effect is more obvious for KHR. After annealing for 5 days, the physical properties value include tensile strength, flexural strength, and HDT of iPB+5% HR reach that of pure iPB after annealing for 7 days, but only 3 days for iPB+5% KHR. The TG analysis and SEM photographs give clear evidence that the beneficial effect of KH570 modified HR on improving the interface compatibility with iPB.


2014 ◽  
Vol 501-504 ◽  
pp. 2001-2006
Author(s):  
Ya Liu ◽  
Li Zheng ◽  
Cheng Tao Huang ◽  
Zhao Biao Huang ◽  
Lin Liu

After impoundment of the Three Gorges Reservoir, Jingjiang reach, in the middle of the Yangtze River, has gradually shown a series of atypical fluvial features, adversely affecting the maintenance of waterways. Citing the Laijiapu Waterway, a meandering segment in the lower Jingjiang for example, this paper compared the fluvial features of the channel before and after the impoundment, summed up its navigation-obstructing features, and proposed guarding the point bar on the convex bank and channel bar in the widening section as a key to maintaining the stability of the navigation channels.


1990 ◽  
Vol 112 (1) ◽  
pp. 10-15 ◽  
Author(s):  
M. I. Flik ◽  
C. L. Tien

Intrinsic thermal stability denotes a situation where a superconductor can carry the operating current without resistance at all times after the occurrence of a localized release of thermal energy. This novel stability criterion is different from the cryogenic stability criteria for magnets and has particular relevance to thin-film superconductors. Crystals of ceramic high-temperature superconductors are likely to exhibit anisotropic thermal conductivity. The resultant anisotropy of highly oriented films of superconductors greatly influences their thermal stability. This work presents an analysis for the maximum operating current density that ensures intrinsic stability. The stability criterion depends on the amount of released energy, the Biot number, the aspect ratio, and the ratio of the thermal conductivities in the plane of the film and normal to it.


2016 ◽  
Vol 47 (2) ◽  
pp. 233-251 ◽  
Author(s):  
Zhou Zhao ◽  
Weiren Bao ◽  
Youbo Di ◽  
Jinming Dai

A new flame-retardant protein viscose fiber with safely wearing performance has been prepared through blending protein solution, flame retardant (hexaphenoxycyclotriphosphazene) and viscose spinning solution, in which wool protein was used and added to spinning solution on the basis of 16% flame retardant, and the properties of the fiber were investigated. The product has more compact structure inside the fiber and evenly scattered small pores on the surface. Flame-retardant protein viscose fiber can reach the flame-retardant standard both before and after 30 times wash test, and the mechanical strength of the fiber was also improved. The introduction of hexaphenoxycyclotriphosphazene lowered the primary decomposition temperature of viscose fiber, reduced its weight loss. The flame-retardancy of the fiber can be improved by the introduction of protein. In thermal processes, the major product of thermal decomposition was CO2, no hazardous and noxious gases were released. Due to the introduction of protein, moisture regain of the fiber is a little lower than that of viscose fiber, but higher than flame-retardant viscose fiber. Warmth retention property was also improved. Friction coefficient of the product is lower than that of flame-retardant viscose fiber. Bulking intensity was increased, which is better than that of viscose fiber.


Author(s):  
Stephanie Saalfeld ◽  
Thomas Wegener ◽  
Berthold Scholtes ◽  
Thomas Niendorf

AbstractThe stability of compressive residual stresses generated by deep rolling plays a decisive role on the fatigue behavior of specimens and components, respectively. In this regard, deep rolling at elevated temperature has proven to be very effective in stabilizing residual stresses when fatigue analysis is conducted at ambient temperature. However, since residual stresses can be affected not only by plastic deformation but also when thermal energy is provided, it is necessary to analyze the influence of temperature and time on the relaxation behavior of residual stresses at elevated temperature. To evaluate the effect of deep rolling at elevated temperatures on stability limits under thermal as well as combined thermo-mechanical loads, the present work introduces and discusses the results of investigations on the thermal stability of residual stresses in differently deep rolled material conditions of the steel SAE 1045.


2021 ◽  
pp. 004051752110306
Author(s):  
Honglian Cong ◽  
Boyu Zhao ◽  
Hao Han ◽  
Xuliang Yu

Nine groups of knitted woolen fabrics for sportswear with different technical characteristics were treated with oxygen low-temperature plasma, and the changes in the surface morphology and chemical composition of wool fibers before and after plasma treatment, as well as the changes in the applicability indexes of knitted woolen fabrics, were studied. Finally, the comfort performance of the fabrics was evaluated by combining the concentration mapping method and the function evaluation value method. The analysis found that the surface scales of wool fibers were seriously etched after oxygen low-temperature plasma treatment, and the anti-felting, bursting strength and moisture absorption of the knitted woolen fabrics were improved. At the same time, the quick-drying index of the fabric has also been improved to a certain extent. This research provides a basis for the development of knitted woolen fabric for sportswear with excellent performance.


Sign in / Sign up

Export Citation Format

Share Document