scholarly journals Cryo-EM of the yeast VO complex reveals distinct binding sites for macrolide V-ATPase inhibitors

2021 ◽  
Author(s):  
Kristine A Keon ◽  
Samir Benlekbir ◽  
John L Rubinstein

Vacuolar-type adenosine triphosphatases (V-ATPases) are proton pumps found in almost all eukaryotic cells. These enzymes consist of a soluble catalytic V1 region that hydrolyzes ATP and a membrane-embedded VO region responsible for proton translocation. V-ATPase activity leads to acidification of endosomes, phagosomes, lysosomes, secretory vesicles, and the trans-Golgi network, with extracellular acidification occurring in some specialized cells. Small molecule inhibitors of V-ATPase have played a crucial role in elucidating numerous aspects of cell biology by blocking acidification of intracellular compartments, while therapeutic use of V-ATPase inhibitors has been proposed for treatment of cancer, osteoporosis, and some infections. Here, we determine structures of the isolated VO complex from Saccharomyces cerevisiae bound to two well-known macrolide inhibitors: bafilomycin A1 and archazolid A. The structures reveal different binding sites for the inhibitors on the surface of the proton-carrying c ring, with only a small amount of overlap between the two sites. Binding of both inhibitors is mediated primarily through van der Waals interactions in shallow pockets and suggests that the inhibitors block rotation of the ring. Together, these structures indicate the existence of a large chemical space available for V-ATPase inhibitors that block acidification by binding the c ring.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stephan Hirschi ◽  
David Kalbermatter ◽  
Zöhre Ucurum ◽  
Thomas Lemmin ◽  
Dimitrios Fotiadis

AbstractThe green-light absorbing proteorhodopsin (GPR) is the archetype of bacterial light-driven proton pumps. Here, we present the 2.9 Å cryo-EM structure of pentameric GPR, resolving important residues of the proton translocation pathway and the oligomerization interface. Superposition with the structure of a close GPR homolog and molecular dynamics simulations reveal conformational variations, which regulate the solvent access to the intra- and extracellular half channels harbouring the primary proton donor E109 and the proposed proton release group E143. We provide a mechanism for the structural rearrangements allowing hydration of the intracellular half channel, which are triggered by changing the protonation state of E109. Functional characterization of selected mutants demonstrates the importance of the molecular organization around E109 and E143 for GPR activity. Furthermore, we present evidence that helices involved in the stabilization of the protomer interfaces serve as scaffolds for facilitating the motion of the other helices. Combined with the more constrained dynamics of the pentamer compared to the monomer, these observations illustrate the previously demonstrated functional significance of GPR oligomerization. Overall, this work provides molecular insights into the structure, dynamics and function of the proteorhodopsin family that will benefit the large scientific community employing GPR as a model protein.


1986 ◽  
Vol 108 (2) ◽  
pp. 267-273 ◽  
Author(s):  
S. Kyakumoto ◽  
R. Kurokawa ◽  
Y. Ohara-Nemoto ◽  
M. Ota

ABSTRACT Cytosol and nuclear androgen receptors in submandibular glands of male and female mice were measured by an exchange assay at 0 °C. The binding of [3H]methyltrienolone to cytosol receptors in females was mostly saturated within a short period of incubation (3 h), whereas the saturation was much slower in males; suggesting that almost all of the cytosol receptors were unoccupied in females and the receptors were partially occupied in males. Nuclear receptors were extracted with pyridoxal 5′-phosphate (5 mmol/l) from nuclear fractions with 93–95% efficiency. The exchange of the bound steroids occurred by 24–48 h at 0 °C, suggesting that most of the nuclear androgen receptor was occupied. The binding was low at higher temperatures, probably due to inactivation of the receptor. Scatchard analysis showed that the apparent dissociation constants of cytosol and nuclear receptors were similar (0·8 and 0·9 nmol/l respectively) in both sexes. On the other hand, the number of androgen-binding sites in the nucleus was much higher in males than in females (1052 fmol/mg DNA and 32 fmol/mg DNA respectively), while the number in the cytosol was higher in females than in males (512 fmol/mg DNA and 368 fmol/mg DNA respectively). These observations show that androgen receptors exist mainly (74%) in the nuclei of males, while they exist mostly (94%) in the cytosol of females. J. Endocr. (1986) 108, 267–273


2021 ◽  
Vol 22 (7) ◽  
pp. 3406
Author(s):  
Robert L. Medcalf ◽  
Charithani B. Keragala

The fibrinolytic system provides an essential means to remove fibrin deposits and blood clots. The actual protease responsible for this is plasmin, formed from its precursor, plasminogen. Fibrin is heralded as it most renowned substrate but for many years plasmin has been known to cleave many other substrates, and to also activate other proteolytic systems. Recent clinical studies have shown that the promotion of plasmin can lead to an immunosuppressed phenotype, in part via its ability to modulate cytokine expression. Almost all immune cells harbor at least one of a dozen plasminogen receptors that allows plasmin formation on the cell surface that in turn modulates immune cell behavior. Similarly, a multitude of pathogens can also express their own plasminogen activators, or contain surface proteins that provide binding sites host plasminogen. Plasmin formed under these circumstances also empowers these pathogens to modulate host immune defense mechanisms. Phylogenetic studies have revealed that the plasminogen activating system predates the appearance of fibrin, indicating that plasmin did not evolve as a fibrinolytic protease but perhaps has its roots as an immune modifying protease. While its fibrin removing capacity became apparent in lower vertebrates these primitive under-appreciated immune modifying functions still remain and are now becoming more recognised.


2021 ◽  
Author(s):  
Qinghua Lu ◽  
Xiangwen Luo ◽  
Xiao Yang ◽  
Tong Zhou ◽  
Yu Zhang ◽  
...  

Abstract Background: Vacuolar ATPases (v-ATPases) are proton pumps for proton translocation across membranes that utilize energy derived from ATP hydrolysis; Previous research revealed Osv-ATPases mediates phytohormes levels and resistance in rice. Osv-ATPase subunit d (Osv-ATPase d) is part of an integral, membrane-embedded V0 complex of V-ATPases complex, whether Osv-ATPase d involves in phytohormes biosynthesis and resistance in rice remains unknown.Finding: The knockout mutant line (line 5) of Osv-ATPase d was generated using the CRISPR/Cas9 system, mutation of Osv-ATPase d did not show any detrimental effect on plant growth or yield productivity. Transcriptomic results showed Osv-ATPase d probably involved in mediating the biosynthesis of plant hormones and resistance in rice. Mutation of Osv-ATPase d significantly increased JA and ABA biosynthesis than wild type. Compared to wild type, mutation of Osv-ATPase d increased the resistance against Southern rice black-streaked dwarf virus (SRBSDV), however, decreased the resistance against Rice stripe virus (RSV) in rice. Conclusion: Taken together, our data reveal the Osv-ATPase d mediates phytohormone biosynthesis and virus resistance in rice, which can be selected as a potential target for resistance breeding in rice.


2021 ◽  
Vol 25 ◽  
Author(s):  
Pedro Alves Bezerra Morais ◽  
Carla Santana Francisco ◽  
Heberth de Paula ◽  
Rayssa Ribeiro ◽  
Mariana Alves Eloy ◽  
...  

: Historically, the medicinal chemistry is concerned with the approach of organic chemistry to new drug synthesis. Considering the fruitful collections of new molecular entities, the dedicated efforts for medicinal chemistry are rewarding. Planning and search of new and applicable pharmacologic therapies involve the altruistic nature of the scientists. Since the 19th century, notoriously the application of isolated and characterized plant-derived compounds in modern drug discovery and in various stages of clinical development highlight its viability and significance. Natural products influence a broad range of biological processes, covering transcription, translation, and post-translational modification and being effective modulators of almost all basic cellular processes. The research of new chemical entities through “click chemistry” continuously opens up a map for the remarkable exploration of chemical space in towards leading natural products optimization by structure-activity relationship. Finally, here in this review, we expect to gather a broad knowledge involving triazolic natural products derivatives, synthetic routes, structures, and their biological activities.


Endocrinology ◽  
2013 ◽  
Vol 154 (5) ◽  
pp. 1832-1844 ◽  
Author(s):  
J. Annelies E. Polman ◽  
E. Ronald de Kloet ◽  
Nicole A. Datson

Abstract In the present study, genomic binding sites of glucocorticoid receptors (GR) were identified in vivo in the rat hippocampus applying chromatin immunoprecipitation followed by next-generation sequencing. We identified 2470 significant GR-binding sites (GBS) and were able to confirm GR binding to a random selection of these GBS covering a wide range of P values. Analysis of the genomic distribution of the significant GBS revealed a high prevalence of intragenic GBS. Gene ontology clusters involved in neuronal plasticity and other essential neuronal processes were overrepresented among the genes harboring a GBS or located in the vicinity of a GBS. Male adrenalectomized rats were challenged with increasing doses of the GR agonist corticosterone (CORT) ranging from 3 to 3000 μg/kg, resulting in clear differences in the GR-binding profile to individual GBS. Two groups of GBS could be distinguished: a low-CORT group that displayed GR binding across the full range of CORT concentrations, and a second high-CORT group that displayed significant GR binding only after administering the highest concentration of CORT. All validated GBS, in both the low-CORT and high-CORT groups, displayed mineralocorticoid receptor binding, which remained relatively constant from 30 μg/kg CORT upward. Motif analysis revealed that almost all GBS contained a glucocorticoid response element resembling the consensus motif in literature. In addition, motifs corresponding with new potential GR-interacting proteins were identified, such as zinc finger and BTB domain containing 3 (Zbtb3) and CUP (CG11181 gene product from transcript CG11181-RB), which may be involved in GR-dependent transactivation and transrepression, respectively. In conclusion, our results highlight the existence of 2 populations of GBS in the rat hippocampal genome.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Julia Steiner ◽  
Leonid Sazanov

Multiple resistance and pH adaptation (Mrp) antiporters are multi-subunit Na+ (or K+)/H+ exchangers representing an ancestor of many essential redox-driven proton pumps, such as respiratory complex I. The mechanism of coupling between ion or electron transfer and proton translocation in this large protein family is unknown. Here, we present the structure of the Mrp complex from Anoxybacillus flavithermus solved by cryo-EM at 3.0 Å resolution. It is a dimer of seven-subunit protomers with 50 trans-membrane helices each. Surface charge distribution within each monomer is remarkably asymmetric, revealing probable proton and sodium translocation pathways. On the basis of the structure we propose a mechanism where the coupling between sodium and proton translocation is facilitated by a series of electrostatic interactions between a cation and key charged residues. This mechanism is likely to be applicable to the entire family of redox proton pumps, where electron transfer to substrates replaces cation movements.


2020 ◽  
Vol 8 ◽  
Author(s):  
Chinmayee Choudhury ◽  
Anshu Bhardwaj

Antimicrobial resistance (AMR) is one of the most serious global public health threats as it compromises the successful treatment of deadly infectious diseases like tuberculosis. New therapeutics are constantly needed but it takes a long time and is expensive to explore new biochemical space. One way to address this issue is to repurpose the validated targets and identify novel chemotypes that can simultaneously bind to multiple binding pockets of these targets as a new lead generation strategy. This study reports such a strategy, dynamic hybrid pharmacophore model (DHPM), which represents the combined interaction features of different binding pockets contrary to the conventional approaches, where pharmacophore models are generated from single binding sites. We have considered Mtb-DapB, a validated mycobacterial drug target, as our model system to explore the effectiveness of DHPMs to screen novel unexplored compounds. Mtb-DapB has a cofactor binding site (CBS) and an adjacent substrate binding site (SBS). Four different model systems of Mtb-DapB were designed where, either NADPH/NADH occupies CBS in presence/absence of an inhibitor 2, 6-PDC in the adjacent SBS. Two more model systems were designed, where 2, 6-PDC was linked to NADPH and NADH to form hybrid molecules. The six model systems were subjected to 200 ns molecular dynamics simulations and trajectories were analyzed to identify stable ligand-receptor interaction features. Based on these interactions, conventional pharmacophore models (CPM) were generated from the individual binding sites while DHPMs were created from hybrid-molecules occupying both binding sites. A huge library of 1,563,764 publicly available molecules were screened by CPMs and DHPMs. The screened hits obtained from both types of models were compared based on their Hashed binary molecular fingerprints and 4-point pharmacophore fingerprints using Tanimoto, Cosine, Dice and Tversky similarity matrices. Molecules screened by DHPM exhibited significant structural diversity, better binding strength and drug like properties as compared to the compounds screened by CPMs indicating the efficiency of DHPM to explore new chemical space for anti-TB drug discovery. The idea of DHPM can be applied for a wide range of mycobacterial or other pathogen targets to venture into unexplored chemical space.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lin Zhang ◽  
Zhiqiang Song ◽  
Fangfang Li ◽  
Xixi Li ◽  
Haikun Ji ◽  
...  

Abstract Background Drought stress is one of the major abiotic stresses that affects plant growth and productivity. The GAPCp genes play important roles in drought stress tolerance in multiple species. The aim of this experiment was to identify the core cis-regulatory elements that may respond to drought stress in the GAPCp2 and GAPCp3 promoter sequences. Results In this study, the promoters of GAPCp2 and GAPCp3 were cloned. The promoter activities were significantly improved under abiotic stress via regulation of Rluc reporter gene expression, while promoter sequence analysis indicated that these fragments were not almost identical. In transgenic Arabidopsis with the expression of the GUS reporter gene under the control of one of these promoters, the activities of GUS were strong in almost all tissues except the seeds, and the activities were induced after abiotic stress. The yeast one-hybrid system and EMSA demonstrated that TaMYB bound TaGAPCp2P/3P. By analyzing different 5′ deletion mutants of these promoters, it was determined that TaGAPCp2P (− 1312~ − 528) and TaGAPCp3P (− 2049~ − 610), including the MYB binding site, contained enhancer elements that increased gene expression levels under drought stress. We used an effector and a reporter to co-transform tobacco and found that TaMYB interacted with the specific MYB binding sites of TaGAPCp2P (− 1197~ − 635) and TaGAPCp3P (− 1456~ − 1144 and − 718~ − 610) in plant cells. Then, the Y1H system and EMSA assay demonstrated that these MYB binding sites in TaGAPCp2P (− 1135 and − 985) and TaGAPCp3P (− 1414 and − 665) were the target cis-elements of TaMYB. The deletion of the specific MYB binding sites in the promoter fragments significantly restrained the drought response, and these results confirmed that these MYB binding sites (AACTAAA/C) play vital roles in improving the transcription levels under drought stress. The results of qRT-PCR in wheat protoplasts transiently overexpressing TaMYB indicated that the expression of TaGAPCp2/3 induced by abiotic stress was upregulated by TaMYB. Conclusion The MYB binding sites (AACTAAA/C) in TaGAPCp2P/3P were identified as the key cis-elements for responding to drought stress and were bound by the transcription factor TaMYB.


Author(s):  
Yu Tian ◽  
Ling Wu ◽  
Le Yuan ◽  
Shaozhen Ding ◽  
Fu Chen ◽  
...  

Abstract Summary The biosynthetic ability of living organisms has important applications in producing bulk chemicals, biofuels and natural products. Based on the most comprehensive biosynthesis knowledgebase, a computational system, BCSExplorer, is proposed to discover the unexplored chemical space using nature’s biosynthetic potential. BCSExplorer first integrates the most comprehensive biosynthetic reaction database with 280 000 biochemical reactions and 60 000 chemicals biosynthesized globally over the past 130 years. Second, in this study, a biosynthesis tree is computed for a starting chemical molecule based on a comprehensive biotransformation rule library covering almost all biosynthetic possibilities, in which redundant rules are removed using a new algorithm. Moreover, biosynthesis feasibility, drug-likeness and toxicity analysis of a new generation of compounds will be pursued in further studies to meet various needs. BCSExplorer represents a novel method to explore biosynthetically available chemical space. Availability and implementation BCSExplorer is available at: http://www.rxnfinder.org/bcsexplorer/. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document