scholarly journals Membrane conductances of mouse cone photoreceptors

2020 ◽  
Vol 152 (3) ◽  
Author(s):  
Norianne T. Ingram ◽  
Alapakkam P. Sampath ◽  
Gordon L. Fain

Vertebrate photoreceptor cells respond to light through a closure of CNG channels located in the outer segment. Multiple voltage-sensitive channels in the photoreceptor inner segment serve to transform and transmit the light-induced outer-segment current response. Despite extensive studies in lower vertebrates, we do not know how these channels produce the photoresponse of mammalian photoreceptors. Here we examined these ionic conductances recorded from single mouse cones in unlabeled, dark-adapted retinal slices. First, we show measurements of the voltage dependence of the light response. After block of voltage-gated Ca2+ channels, the light-dependent current was nearly linear within the physiological range of voltages with constant chord conductance and a reversal potential similar to that previously determined in lower vertebrate photoreceptors. At a dark resting membrane potential of −45 mV, cones maintain a standing Ca2+ current (iCa) between 15 and 20 pA. We characterized the time and voltage dependence of iCa and a calcium-activated anion channel. After constitutive closure of the CNG channels by the nonhydrolysable analogue GTP-γ-S, we observed a light-dependent increase in iCa followed by a Ca2+-activated K+ current, both probably the result of feedback from horizontal cells. We also recorded the hyperpolarization-activated cyclic nucleotide-gated (HCN) conductance (ih) and measured its current-voltage relationship and reversal potential. With small hyperpolarizations, ih activated with a time constant of 25 ms; activation was speeded with larger hyperpolarizations. Finally, we characterized two voltage-gated K+-conductances (iK). Depolarizing steps beginning at −10 mV activated a transient, outwardly rectifying iK blocked by 4-AP and insensitive to TEA. A sustained iK isolated through subtraction was blocked by TEA but was insensitive to 4-AP. The sustained iK had a nearly linear voltage dependence throughout the physiological voltage range of the cone. Together these data constitute the first comprehensive study of the channel conductances of mouse photoreceptors.

2015 ◽  
Vol 112 (52) ◽  
pp. E7286-E7292 ◽  
Author(s):  
Rene Barro-Soria ◽  
Marta E. Perez ◽  
H. Peter Larsson

KCNE β-subunits assemble with and modulate the properties of voltage-gated K+ channels. In the colon, stomach, and kidney, KCNE3 coassembles with the α-subunit KCNQ1 to form K+ channels important for K+ and Cl− secretion that appear to be voltage-independent. How KCNE3 subunits turn voltage-gated KCNQ1 channels into apparent voltage-independent KCNQ1/KCNE3 channels is not completely understood. Different mechanisms have been proposed to explain the effect of KCNE3 on KCNQ1 channels. Here, we use voltage clamp fluorometry to determine how KCNE3 affects the voltage sensor S4 and the gate of KCNQ1. We find that S4 moves in KCNQ1/KCNE3 channels, and that inward S4 movement closes the channel gate. However, KCNE3 shifts the voltage dependence of S4 movement to extreme hyperpolarized potentials, such that in the physiological voltage range, the channel is constitutively conducting. By separating S4 movement and gate opening, either by a mutation or PIP2 depletion, we show that KCNE3 directly affects the S4 movement in KCNQ1. Two negatively charged residues of KCNE3 (D54 and D55) are found essential for the effect of KCNE3 on KCNQ1 channels, mainly exerting their effects by an electrostatic interaction with R228 in S4. Our results suggest that KCNE3 primarily affects the voltage-sensing domain and only indirectly affects the gate.


1999 ◽  
Vol 82 (2) ◽  
pp. 778-786 ◽  
Author(s):  
P. J. Laurienti ◽  
J. E. Blankenship

The parapodial neuromuscular junction in the marine snail Aplysia brasiliana is a model synapse for the investigation of neural modulation. The parapodial muscle fibers are innervated by cholinergic motoneurons and by serotonergic modulatory cells. The physiological properties of voltage-gated currents of the muscle membranes and the effects of serotonin on these currents have been published previously. However, the pharmacological properties of the cholinergic receptors have not been investigated. Acetylcholine (ACh) applied exogenously to dissociated muscle fibers produces a response with a reversal potential of about −52 mV; the resting membrane potential of the average muscle fiber is approximately −56 mV. ACh induces variable responses (depolarizations or hyperpolarizations) in individual cells, but the transmitter never causes a depolarization adequate to produce muscle contraction. We demonstrate that the ACh response is the result of the activation of two distinct receptors. One receptor is linked to a chloride channel and induces a hyperpolarization with a reversal potential near −70 mV. This receptor is activated selectively by suberyldicholine and by nicotine and is antagonized by curare but not by hexamethonium. The second response, presumably caused by increased conductance to mixed cations, results in muscle fiber depolarization with a reversal potential near −35 mV and does induce muscle contraction. This receptor is activated by methylcarbamylcholine and selectively blocked by hexamethonium; atypically, this receptor is not activated by nicotine nor by carbachol. The depolarizing, cation-selective receptors likely are associated with identified excitatory cholinergic motoneurons the activity of which typically results in muscle contractions because the reversal potential for this ACh response is more depolarized than the activation threshold for voltage-gated calcium channels in these fibers. The hyperpolarizing, chloride-selective receptors may be associated with inhibitory motoneurons; such motoneurons have yet to be identified, but their presence is inferred because of the occurrence of spontaneous inhibitory junctional potentials recording from muscle fibers in situ. Muscle fiber responses to exogenously applied ACh reflect the relative contribution of each receptor type in each muscle fiber.


1994 ◽  
Vol 266 (2) ◽  
pp. F325-F341 ◽  
Author(s):  
D. V. Gordienko ◽  
C. Clausen ◽  
M. S. Goligorsky

The repertoire of ionic channels expressed in myocytes freshly isolated from microdissected interlobar and arcuate arteries of rat kidney and their integrative behavior in response to endothelin-1 (ET-1) were studied by identification and characterization of major whole cell current components using patch-clamp technique. In renal microvascular smooth muscle cells (RMSMC) dialyzed with K(+)-containing solution, rapidly inactivating (Ito) and sustained outward K+ currents were identified. Voltage-dependent Ito was categorized as "A" current based on its kinetics, sensitivity to 4-aminopyridine (4-AP), and refractoriness to tetraethylammonium (TEA+). Ca(2+)-activated component of K+ current was completely blocked by 10 mM TEA+, whereas 5 mM 4-AP did not affect this current. Maximal Ca2+ current (ICa) recorded in Cs(+)-loaded RMSMC reached 250 pA when cells were bathed in a solution with 2.5 mM Ca2+. Two patterns of ICa differing in kinetics, voltage range of activation and inactivation, and sensitivity to nifedipine were identified as T and L currents. Ca(2+)-dependent current component showing reversal potential near Cl- current (ECl) and sensitivity to blocking action of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid was identified as Ca(2+)-activated ECl. Activation of RMSMC with ET-1 (1-10 nM) induced elevation of [Ca2+]i and subsequent activation of Ca(2+)-activated ICl, which led to membrane depolarization sufficient to activate voltage-gated Ca2+ channels. ET-1-evoked transient reduction of ICa carried through voltage-gated Ca2+ channels was followed by augmentation of L-type ICa. ET-1-induced mobilization of intracellular Ca2+, accompanied by membrane depolarization, resulted in activation of Ca(2+)-dependent K+ channels, which can play the role of a feedback element terminating ET-1-induced membrane depolarization.


2008 ◽  
Vol 294 (1) ◽  
pp. C251-C262 ◽  
Author(s):  
James J. Matsuda ◽  
Mohammed S. Filali ◽  
Kenneth A. Volk ◽  
Malia M. Collins ◽  
Jessica G. Moreland ◽  
...  

ClC-3 is a member of the ClC family of anion channels/transporters. Recently, the closely related proteins ClC-4 and ClC-5 were shown to be Cl−/H+ antiporters ( 39 , 44 ). The function of ClC-3 has been controversial. We studied anion currents in HEK293T cells expressing wild-type or mutant ClC-3. The basic biophysical properties of ClC-3 currents were very similar to those of ClC-4 and ClC-5, and distinct from those of the swelling-activated anion channel. ClC-3 expression induced currents with time-dependent activation that rectified sharply in the outward direction. The reversal potential of the current shifted by −48.3 ± 2.5 mV per 10-fold (decade) change in extracellular Cl− concentration, which did not conform to the behavior of an anion-selective channel based upon the Nernst equation, which predicts a −58.4 mV/decade shift at 22°C. Manipulation of extracellular pH (6.35–8.2) altered reversal potential by 10.2 ± 3.0 mV/decade, suggesting that ClC-3 currents were coupled to proton movement. Mutation of a specific glutamate residue (E224A) changed voltage dependence in a manner similar to that observed in other ClC Cl−/H+ antiporters. Mutant currents exhibited Nernstian changes in reversal potential in response to altered extracellular Cl− concentration that averaged −60 ± 3.4 mV/decade and were pH independent. Thus ClC-3 overexpression induced a pH-sensitive conductance in HEK293T cells that is biophysically similar to ClC-4 and ClC-5.


1995 ◽  
Vol 268 (2) ◽  
pp. H926-H934 ◽  
Author(s):  
E. A. Aiello ◽  
M. P. Walsh ◽  
W. C. Cole

The effect of adenosine 3',5'-cyclic monophosphate-dependent protein kinase (PKA) activity on 4-aminopyridine (4-AP)-sensitive delayed rectifier current (IdK) in isolated rabbit portal vein smooth muscle cells was studied via whole cell voltage clamp (20–22 degrees C). A threefold increase in 4-AP-sensitive (5 mM) IdK was recorded after gaining cell access during dialysis with 5 mM intracellular ATP and internal Ca2+ buffered to a low level with 5 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Dialysis with the nonhydrolyzable ATP analogue 5'-adenylylimidodiphosphate (5 mM) or the specific peptide inhibitor of PKA (PKI; 10 microM) reduced current runup by 50 and 70%, respectively. Delayed dialysis with PKI reversed runup and inhibited IdK to below initial levels. Forskolin (1 microM) caused a reversible increase in IdK, which was inhibited by 4-AP (5 mM). Isoproterenol (1 microM) reversibly enhanced IdK; the increase was sensitive to propranolol (2 microM) and 4-AP (5 mM) and was prevented by dialysis with PKI (10 microM). IdK was enhanced over the entire voltage range of activation and associated with a negative shift in reversal potential of net whole cell current, consistent with hyperpolarization of resting membrane potential. The data provide the first evidence for a signal transduction mechanism involving beta-adrenoceptors, adenylate cyclase, and a phosphotransferase reaction mediated by PKA for the regulation of delayed rectifier K+ channels in vascular smooth muscle.


1990 ◽  
Vol 96 (1) ◽  
pp. 195-215 ◽  
Author(s):  
M C Sanguinetti ◽  
N K Jurkiewicz

An envelope of tails test was used to show that the delayed rectifier K+ current (IK) of guinea pig ventricular myocytes results from the activation of two outward K+ currents. One current was specifically blocked by the benzenesulfonamide antiarrhythmic agent, E-4031 (IC50 = 397 nM). The drug-sensitive current, "IKr" exhibits prominent rectification and activates very rapidly relative to the slowly activating drug-insensitive current, "IKs." IKs was characterized by a delayed onset of activation that occurs over a voltage range typical of the classically described cardiac IK. Fully activated IKs, measured as tail current after 7.5-s test pulses, was 11.4 times larger than the fully activated IKr. IKr was also blocked by d-sotalol (100 microM), a less potent benzenesulfonamide Class III antiarrhythmic agent. The activation curve of IKr had a steep slope (+7.5 mV) and a negative half-point (-21.5 mV) relative to the activation curve of IKs (slope = +12.7 mV, half-point = +15.7 mV). The reversal potential (Erev) of IKr (-93 mV) was similar to EK (-94 mV for [K+]o = 4 mM), whereas Erev of IKs was -77 mV. The time constants for activation and deactivation of IKr made up a bell-shaped function of membrane potential, peaking between -30 and -40 mV (170 ms). The slope conductance of the linear portion of the fully activated IKr-V relation was 22.5 S/F. Inward rectification of this relation occurred at potentials greater than -50 mV, resulting in a voltage-dependent decrease in peak IKr at test potentials greater than 0 mV. Peak IKr at 0 mV averaged 0.8 pA/pF (n = 21). Although the magnitude of IKr was small relative to fully activated IKs, the two currents were of similar magnitude when measured during a relatively short pulse protocol (225 ms) at membrane potentials (-20 to +20 mV) typical of the plateau phase of cardiac action potentials.


2010 ◽  
Vol 135 (3) ◽  
pp. 275-295 ◽  
Author(s):  
Li Dai ◽  
Vivek Garg ◽  
Michael C. Sanguinetti

Slo2.1 channels conduct an outwardly rectifying K+ current when activated by high [Na+]i. Here, we show that gating of these channels can also be activated by fenamates such as niflumic acid (NFA), even in the absence of intracellular Na+. In Xenopus oocytes injected with <10 ng cRNA, heterologously expressed human Slo2.1 current was negligible, but rapidly activated by extracellular application of NFA (EC50 = 2.1 mM) or flufenamic acid (EC50 = 1.4 mM). Slo2.1 channels activated by 1 mM NFA exhibited weak voltage dependence. In high [K+]e, the conductance–voltage (G-V) relationship had a V1/2 of +95 mV and an effective valence, z, of 0.48 e. Higher concentrations of NFA shifted V1/2 to more negative potentials (EC50 = 2.1 mM) and increased the minimum value of G/Gmax (EC50 = 2.4 mM); at 6 mM NFA, Slo2.1 channel activation was voltage independent. In contrast, V1/2 of the G-V relationship was shifted to more positive potentials when [K+]e was elevated from 1 to 300 mM (EC50 = 21.2 mM). The slope conductance measured at the reversal potential exhibited the same [K+]e dependency (EC50 = 23.5 mM). Conductance was also [Na+]e dependent. Outward currents were reduced when Na+ was replaced with choline or mannitol, but unaffected by substitution with Rb+ or Li+. Neutralization of charged residues in the S1–S4 domains did not appreciably alter the voltage dependence of Slo2.1 activation. Thus, the weak voltage dependence of Slo2.1 channel activation is independent of charged residues in the S1–S4 segments. In contrast, mutation of R190 located in the adjacent S4–S5 linker to a neutral (Ala or Gln) or acidic (Glu) residue induced constitutive channel activity that was reduced by high [K+]e. Collectively, these findings indicate that Slo2.1 channel gating is modulated by [K+]e and [Na+]e, and that NFA uncouples channel activation from its modulation by transmembrane voltage and intracellular Na+.


1988 ◽  
Vol 59 (5) ◽  
pp. 1352-1376 ◽  
Author(s):  
G. F. Tseng ◽  
L. B. Haberly

1. Intracellular recordings were obtained from anatomically verified layer II pyramidal cells in slices from rat piriform cortex cut perpendicular to the surface. 2. Responses to afferent and association fiber stimulation at resting membrane potential consisted of a depolarizing potential followed by a late hyperpolarizing potential (LHP). Membrane polarization by current injection revealed two components in the depolarizing potential: an initial excitatory postsynaptic potential (EPSP) followed at brief latency by an inhibitory postsynaptic potential (IPSP) that inverted with membrane depolarization and truncated the duration of the EPSP. 3. The early IPSP displayed the following characteristics suggesting mediation by gamma-aminobutyric acid (GABA) receptors linked to Cl- channels: associated conductance increase, sensitivity to increases in internal Cl- concentration, blockage by picrotoxin and bicuculline, and potentiation by pentobarbital sodium. The reversal potential was in the depolarizing direction with respect to resting membrane potential so that the inhibitory effect was exclusively via current shunting. 4. The LHP had an associated conductance increase and a reversal potential of -90 mV in normal bathing medium that shifted according to Nernst predictions for a K+ potential with changes in external K+ over the range 4.5-8 mM indicating mediation by the opening of K+ channels and ruling out an electrogenic pump origin. 5. Lack of effect of bath-applied 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) or internally applied ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) on the LHP and failure of high amplitude, direct membrane depolarization to evoke a comparable potential, argue against endogenous mediation of the LHP by a Ca2+ activated K+ conductance [gK(Ca)]. However, an apparent endogenously mediated gK(Ca) with a duration much greater than the LHP was observed in a low percent of layer II pyramidal cells. Lack of effect of 8-Br-cAMP also indicates a lack of dependence of the LHP on cAMP. 6. Other characteristics of the LHP that were demonstrated include: a lack of blockage by GABAA receptor antagonists, a probable voltage sensitivity (decrease in amplitude in the depolarizing direction), and an apparent brief onset latency (less than 10 ms) when the early IPSP was blocked by picrotoxin. The LHP was unaffected by pentobarbital sodium when the early IPSP was blocked by picrotoxin. 7. Both the LHP and early IPSP were blocked by low Ca2+/high Mg2+, consistent with disynaptic mediation.(ABSTRACT TRUNCATED AT 400 WORDS)


1991 ◽  
Vol 98 (1) ◽  
pp. 77-93 ◽  
Author(s):  
C K Abrams ◽  
K S Jakes ◽  
A Finkelstein ◽  
S L Slatin

The availability of primary sequences for ion-conducting channels permits the development of testable models for mechanisms of voltage gating. Previous work on planar phospholipid bilayers and lipid vesicles indicates that voltage gating of colicin E1 channels involves translocation of peptide segments of the molecule into and across the membrane. Here we identify histidine residue 440 as a gating charge associated with this translocation. Using site-directed mutagenesis to convert the positively charged His440 to a neutral cysteine, we find that the voltage dependence for turn-off of channels formed by this mutant at position 440 is less steep than that for wild-type channels; the magnitude of the change in voltage dependence is consistent with residue 440 moving from the trans to the cis side of the membrane in association with channel closure. The effect of trans pH changes on the ion selectivity of channels formed by the carboxymethylated derivative of the cysteine 440 mutant independently establishes that in the open channel state, residue 440 lies on the trans side of the membrane. On the basis of these results, we propose that the voltage-gated opening of colicin E1 channels is accompanied by the insertion into the bilayer of a helical hairpin loop extending from residue 420 to residue 459, and that voltage-gated closing is associated with the extrusion of this loop from the interior of the bilayer back to the cis side.


1995 ◽  
Vol 73 (6) ◽  
pp. 2404-2412 ◽  
Author(s):  
P. Legendre ◽  
H. Korn

1. The kinetics and mechanisms underlying the voltage dependence of inhibitory postsynaptic currents (IPSCs) recorded in the Mauthner cell (M cell) were investigated in the isolated medulla of 52-h-old zebrafish larvae, with the use of whole cell and outside-out patch-clamp recordings. 2. Spontaneous miniature IPSCs (mIPSCs) were recorded in the presence of 10(-6) M tetrodotoxin (TTX), 10 mM MgCl2, and 0.1 mM [CaCl2]o. Depolarizing the cell from -50 to +50 mV did not evoke any significant change in the distribution of mIPSC amplitudes, whereas synaptic currents were prolonged at positive voltages. The average decay time constant was increased twofold at +50 mV. 3. The voltage dependence of the kinetics of glycine-activated channels was first investigated during whole cell recording experiments. Currents evoked by voltage steps in the presence of glycine (50 microM) were compared with those obtained without glycine. The increase in chloride conductance (gCl-) evoked by glycine was time and voltage dependent. Inactivation and reactivation of the chloride current were observed during voltage pulses from 0 to -50 mV and from -50 to 0 mV, respectively, and they occurred with similar time constants (2-3 s). During glycine application, voltage-ramp analysis revealed a shift in the reversal potential (ECl-) occurring at all [Cl-]i tested. 4. The basis of the voltage sensitivity of glycine-evoked gCl- was first analyzed by measuring the relative changes in the total open probability (NPo) of glycine-activated channels with voltage.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document