3D-Printed Bio-inspired Zero Poisson’s Ratio Graded Metamaterials with High Energy Absorption Performance

Author(s):  
Ramin Hamzehei ◽  
Ali Zolfagharian ◽  
Soheil Dariushi ◽  
Mahdi Bodaghi

Abstract This study aims at introducing a number of two-dimensional (2D) re-entrant based zero Poisson’s ratio (ZPR) graded metamaterials for energy absorption applications. The metamaterials’ designs are inspired by the 2D image of a DNA molecule. This inspiration indicates how a re-entrant unit cell must be patterned along with the two orthogonal directions to obtain a ZPR behavior. Also, how much metamaterials’ energy absorption capacity can be enhanced by taking slots and horizontal beams into account with the inspiration of the DNA molecule’s base pairs. The ZPR metamaterials comprise multi-stiffness unit cells, so-called soft and stiff re-entrant unit cells. The variability in unit cells’ stiffness is caused by the specific design of the unit cells. A finite element analysis (FEA) is employed to simulate the deformation patterns of the ZPRs. Following that, meta-structures are fabricated with 3D printing of TPU as hyperelastic materials to validate the FEA results. A good correlation is observed between FEA and experimental results. The experimental and numerical results show that due to the presence of multi-stiffness re-entrant unit cells, the deformation mechanisms and the unit cells’ densifications are adjustable under quasi-static compression. Also, the structure designed based on the DNA molecule’s base pairs, so-called structure F''', exhibits the highest energy absorption capacity. Apart from the diversity in metamaterial unit cells’ designs, the effect of multi-thickness cell walls is also evaluated. The results show that the diversity in cell wall thicknesses leads to boosting the energy absorption capacity. In this regard, the energy absorption capacity of structure ‘E’ enhances by up to 33% than that of its counterpart with constant cell wall thicknesses. Finally, a comparison in terms of energy absorption capacity and stability between the newly designed ZPRs, traditional ZPRs, and auxetic metamaterial is performed, approving the superiority of the newly designed ZPR metamaterials over both traditional ZPRs and auxetic metamaterials.

2022 ◽  
Vol 2160 (1) ◽  
pp. 012064
Author(s):  
Nan Sun ◽  
Shuai Wang ◽  
Kaifa Zhou ◽  
Wenyi Ma ◽  
Bohao Xu

Abstract As a representative of metamaterials, negative Poisson’s ratio (NPR) material possesses special mechanical properties such as expansion, negative compression ratio and so forth. As a result, it is widely used in the fields of vehicles, aerospace, et al. In this paper, a novel space orthogonal concave honeycomb structure (OC) is designed based on traditional concave honeycomb structure (CHS). In order to explore the influence rule of OC structure on the deformation and energy absorption capacity of crash box under low-speed collision, mechanical analysis and parameter research on OC structure are conducted through quasi-static compression test and numerical simulation. The results suggest that the finite element results of OC structure fit well with the experimental results, and the FEM is highly credible. In addition, the novel OC sandwich structure can effectively enhance the deformation capacity and improve the energy absorption performance of the crash box. When the wall thickness ? of OC structure is 1mm and angle ? is 50°, the deformation and energy absorption capacity of the crash box increased by 25.6% and 19.3% respectively.


Author(s):  
Hassan Mansoori ◽  
Ramin Hamzehei ◽  
Soheil Dariushi

In most cylindrical tubes, the occurrence of negative stiffness under compression is unavoidable. This downward trend in the force–displacement relationship means a decrease in the energy-absorption capacity. To this end, this paper introduces a new assembly method comprising two concentric cylindrical tubes. The inner cylinder possesses positive Poisson's ratio behavior, whereas the outer cylinder exhibits negative Poisson's ratio behavior. When compressed, the outer and inner cylinders shrink and expand, respectively, creating surface contacts between the two cylinders, called coupling effects. This property not only avoids the occurrence of negative stiffness in outer cylindrical tube, but also increases the energy-absorption capacity in an upward trend in the force–displacement relationship. To confirm this claim, three different types of cylindrical tubes, possessing positive Poisson’s ratio, zero Poisson's ratio, and negative Poisson’s ratio behaviors, are considered. A finite-element analysis is implemented to simulate deformation patterns of cylindrical tubes. Then, to verify the results of finite-element analysis, a laser-cutting method is applied to fabricate cylindrical tubes from stainless steel tubes. The results show that the proposed assembly method increases the energy-absorption capacity by up to 95% compared to the well-known auxetic tube. Next, a parametric study is performed, in which the gap space between the two cylinders is considered as a design variable. The results reveal the smaller the gap space, the higher the energy-absorption capacity. The absorbed energy in the assembled cylinders without gap space is 17.6 J, which is 36% greater than that of cylinders with 13 mm gap space. The effects of relative density and crushing speed are also evaluated. When compared to the crushing speed, the energy-absorption capacity is highly dependent on relative density.


2021 ◽  
Author(s):  
Yonghui Wang ◽  
Qiang He ◽  
Yu Chen ◽  
Hang Gu ◽  
Honggen Zhou

Abstract In order to seek higher crashworthiness and energy absorption capacity, based on biological inspiration, a novel bio-inspired re-entrant honeycomb (BRH) structure with negative Poisson's ratio is designed by selecting lotus leaf vein as biological prototype. The numerical simulation model is established by the nonlinear dynamics software ABAQUS and further compared with the available reference results to verify the feasibility. The dynamic compression behavior and energy absorption capacity of two types of BRH (BRH-Ⅰ and BRH-Ⅱ) are firstly compared with conventional re-entrant honeycomb (RH). The simulation results show that BRH have better mechanical properties and energy absorption characteristics. Then, the crushing behavior of BRH-Ⅱ under different impact velocities are systematically studied. Three typical deformation modes of BRH-Ⅱ are observed through the analysis of deformation profile. The quasi-static plateau stress is closely related to the cellular structure. Based on one-dimensional shock theory, the empirical equations of dynamic plateau stress for BRH-Ⅱ with different relative densities are given by using least-square fitting. In addition, the effects of impact velocity and relative density on plateau stress and energy absorption behavior are also studied. The results show that the energy absorption capacity of BRH-Ⅱ is increased nearly six times compared with RH at the same impact velocity.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
S. Talebi ◽  
R. Hedayati ◽  
M. Sadighi

AbstractClosed-cell metal foams are cellular solids that show unique properties such as high strength to weight ratio, high energy absorption capacity, and low thermal conductivity. Due to being computation and cost effective, modeling the behavior of closed-cell foams using regular unit cells has attracted a lot of attention in this regard. Recent developments in additive manufacturing techniques which have made the production of rationally designed porous structures feasible has also contributed to recent increasing interest in studying the mechanical behavior of regular lattice structures. In this study, five different topologies namely Kelvin, Weaire–Phelan, rhombicuboctahedron, octahedral, and truncated cube are considered for constructing lattice structures. The effects of foam density and impact velocity on the stress–strain curves, first peak stress, and energy absorption capacity are investigated. The results showed that unit cell topology has a very significant effect on the stiffness, first peak stress, failure mode, and energy absorption capacity. Among all the unit cell types, the Kelvin unit cell demonstrated the most similar behavior to experimental test results. The Weaire–Phelan unit cell, while showing promising results in low and medium densities, demonstrated unstable behavior at high impact velocity. The lattice structures with high fractions of vertical walls (truncated cube and rhombicuboctahedron) showed higher stiffness and first peak stress values as compared to lattice structures with high ratio of oblique walls (Weaire–Phelan and Kelvin). However, as for the energy absorption capacity, other factors were important. The lattice structures with high cell wall surface area had higher energy absorption capacities as compared to lattice structures with low surface area. The results of this study are not only beneficial in determining the proper unit cell type in numerical modeling of dynamic behavior of closed-cell foams, but they are also advantageous in studying the dynamic behavior of additively manufactured lattice structures with different topologies.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4304
Author(s):  
Miroslaw Ferdynus ◽  
Patryk Rozylo ◽  
Michal Rogala

The paper presents the results of numerical tests of impact and energy absorption capacity of thin-walled columns, subjected to axial impact loading, made of aluminum alloy, and having a square cross-section and spherical indentations on their lateral surfaces. The numerical models were validated using an experiment that was conducted on the Instron CEAST 9350 High Energy System drop hammer. Material properties of the applied aluminum alloy were determined on the basis of a static tension test. The crushing behavior of the columns and some crashworthiness indicators were investigated. On the basis of the results of the conducted analyses, conclusions were drawn about the most beneficial design/constructional variants in terms of achieved crashworthiness parameters.


2001 ◽  
Vol 16 (10) ◽  
pp. 2817-2823 ◽  
Author(s):  
Nguyen The Hung ◽  
Nguyen Dinh Quang ◽  
Slavko Bernik

ZnO-based varistor samples with a relatively high Sb2O3 to Bi2O3 ratio of 5 were fired at 1200 °C and found to have a high threshold voltage (VT) of 280 V/mm and a low energy-absorption capacity of 50 J/cm3. The introduction of rare-earth oxides (REO) increased the energy-absorption capacity of Pr6O11- and Nd2O3-doped samples to 110 J/cm3 while their threshold voltage (VT) remained slightly above 300 V/mm. Doping with Pr6O11 and Nd2O3 altered the formation of the spinel phase and significantly changed its particle size and distribution which, as a result, had a positive effect on the energy-absorption capacity of the REO-doped samples. Doping with small amounts of Pr6O11 and Nd2O3 appears to be promising for the preparation of ZnO-based varistors with a high breakdown voltage and a high energy absorption capacity.


2018 ◽  
Vol 49 (10) ◽  
pp. 1389-1410 ◽  
Author(s):  
Mohsen Hamedi ◽  
Parisa Salimi ◽  
Nima Jamshidi

Cushioning pads alleviate the effects of mechanical stress on the human body due to impacts and daily activities. One relevant application for such pads is orthopedic insoles used for diabetic foot to improve energy absorption and reduce stress gradient by using suitable materials and structures. This article considers a novel design that improves the energy absorption capabilities of cushioning pads. Experiments were conducted to evaluate the properties of the designed weft knitted spacer fabrics. Six groups of samples were knitted in which steel, polyamide, and shape memory alloy materials were utilized as spacer monofilament. Stress–strain, energy absorption and efficiency diagrams were obtained following the quasi-static compression tests carried out on the samples. Three investigation groups were adopted to evaluate the effect of the spacer monofilament material, diameter, and slope on energy absorption capacity. It was determined that shape memory alloy monofilament with 0.1 mm diameter was the optimum configuration to be utilized as spacer yarn in a typical 3D weft knitted fabric. It was also concluded that higher-inclined spacer monofilament in spacer fabric was the optimum choice for knitting cushioning pads as it absorbed more energy. The energy absorption capacity of the optimum design of spacer fabric obtained in this study, increased by a factor of 2.4 compared with commercial polyamide pads. This design can be utilized in any cushioning pad exposed to high mechanical stress due to impact, sports and daily activities.


2015 ◽  
Vol 42 (3) ◽  
pp. 164-177 ◽  
Author(s):  
Bora Gencturk ◽  
Farshid Hosseini

The behavior of reinforced concrete (RC) and reinforced engineered cementitious composites (ECC) was comparatively investigated at the component and system levels through a small-scale (1/8 scale factor) experimental program. The logistical and financial advantages of small-scale testing were utilized to investigate a range of parameters, including the effect of reinforcement ratio and material properties, on the response of reinforced concrete and reinforced ECC structures. The procedures pertaining to material preparation, specimen construction, and input motion development that were critical for enhancing the similarity between the scales are provided. Engineered cementitious composite mixtures with different cost and sustainability indices were evaluated. Under cyclic loading, the stiffness, strength, ductility, and energy absorption capacity of columns made of different ECC mixtures were found to be 110, 65, 45, and 100% higher, respectively, than those of the RC columns. The system level investigation through hybrid simulation showed that the ECC structures sustain less deformation under earthquake excitation due to high energy absorption capacity of the material. The differences in cost, sustainability, and structural performance of different ECC mixtures suggest that a careful selection of materials is required for optimal performance.


Sign in / Sign up

Export Citation Format

Share Document