shiv infection
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 27)

H-INDEX

22
(FIVE YEARS 5)

Author(s):  
Peng Zhang ◽  
Elisabeth Narayanan ◽  
Qingbo Liu ◽  
Yaroslav Tsybovsky ◽  
Kristin Boswell ◽  
...  

2021 ◽  
Vol 17 (12) ◽  
pp. e1010105
Author(s):  
Vishakha Sharma ◽  
Matthew Creegan ◽  
Andrey Tokarev ◽  
Denise Hsu ◽  
Bonnie M. Slike ◽  
...  

HIV-1 replication within the central nervous system (CNS) impairs neurocognitive function and has the potential to establish persistent, compartmentalized viral reservoirs. The origins of HIV-1 detected in the CNS compartment are unknown, including whether cells within the cerebrospinal fluid (CSF) produce virus. We measured viral RNA+ cells in CSF from acutely infected macaques longitudinally and people living with early stages of acute HIV-1. Active viral transcription (spliced viral RNA) was present in CSF CD4+ T cells as early as four weeks post-SHIV infection, and among all acute HIV-1 specimens (N = 6; Fiebig III/IV). Replication-inactive CD4+ T cell infection, indicated by unspliced viral RNA in the absence of spliced viral RNA, was even more prevalent, present in CSF of >50% macaques and human CSF at ~10-fold higher frequency than productive infection. Infection levels were similar between CSF and peripheral blood (and lymph nodes in macaques), indicating comparable T cell infection across these compartments. In addition, surface markers of activation were increased on CSF T cells and monocytes and correlated with CSF soluble markers of inflammation. These studies provide direct evidence of HIV-1 replication in CD4+ T cells and broad immune activation in peripheral blood and the CNS during acute infection, likely contributing to early neuroinflammation and reservoir seeding. Thus, early initiation of antiretroviral therapy may not be able to prevent establishment of CNS viral reservoirs and sources of long-term inflammation, important targets for HIV-1 cure and therapeutic strategies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wen Shi Lee ◽  
Arnold Reynaldi ◽  
Thakshila Amarasena ◽  
Miles P. Davenport ◽  
Matthew S. Parsons ◽  
...  

Broadly neutralising antibodies (bNAbs) may play an important role in future strategies for HIV control. The development of anti-drug antibody (ADA) responses can reduce the efficacy of passively transferred bNAbs but the impact of ADA is imperfectly understood. We previously showed that therapeutic administration of the anti-HIV bNAb PGT121 (either WT or LALA version) controlled viraemia in pigtailed macaques with ongoing SHIV infection. We now report on 23 macaques that had multiple treatments with PGT121. We found that an increasing number of intravenous doses of PGT121 or human IgG1 isotype control antibodies (2-4 doses) results in anti-PGT121 ADA induction and low plasma concentrations of PGT121. ADA was associated with poor or absent suppression of SHIV viremia. Notably, ADA within macaque plasma recognised another human bNAb 10E8 but did not bind to the variable domains of PGT121, suggesting that ADA were primarily directed against the constant regions of the human antibodies. These findings have implications for the development of preclinical studies examining multiple infusions of human bNAbs.


2021 ◽  
Author(s):  
Alan D Curtis ◽  
Pooja T. Saha ◽  
Maria Dennis ◽  
Stella J Berendam ◽  
S. Munir Alam ◽  
...  

Improved access to antiretroviral therapy and antenatal care have significantly reduced in-utero and peri-partum mother-to-child HIV transmission. However, as breastmilk transmission of HIV still occurs at an unacceptable rate there remains a need to develop an effective vaccine for the pediatric population. Previously, we compared different HIV vaccine strategies, intervals, and adjuvants in infant rhesus macaques to optimize the induction of HIV envelope (Env)-specific antibodies with Fc-mediated effector function. Here, we tested the efficacy of an optimized vaccine regimen against oral SHIV acquisition in infant macaques. One group of 12 animals was immunized with 1086.c gp120 protein adjuvanted with 3M-052 in stable emulsion and Modified Vaccinia Ankara (MVA) virus vector expressing 1086.c HIV Env, while the control group (n=12) was immunized only with empty MVA. The first vaccine dose was given within 10 days of birth and booster doses were administered at weeks 6 and 12. The vaccine regimen induced Env-specific plasma IgG antibodies capable of antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Beginning at week 15, infants were exposed orally to escalating doses of heterologous SHIV-1157(QNE)Y173H once a week until infected. Despite the induction of strong Fc-mediated antibody responses, the vaccine regimen did not reduce the risk of infection, time to acquisition, or peak viremia compared to controls. Our results suggest that the non-neutralizing Env-specific antibodies with Fc effector function elicited by this vaccine regimen were insufficient for protection against heterologous oral SHIV infection shortly after the final immunization.


2021 ◽  
Author(s):  
Susan Zolla-Pazner ◽  
Svenja Weiss ◽  
Vincenza Itri ◽  
Ruimin Pan ◽  
Xunqing Jiang ◽  
...  

Abstract V2p and V2i antibodies (Abs) that are specific for epitopes in the V1V2 region of the HIV gp120 envelope (Env) do not effectively neutralize HIV but mediate Fc-dependent anti-viral activities that have been correlated with protection from, or control of HIV, SIV and SHIV infection. Here, we describe a novel molecular toolbox that allows the discrimination of antigenically and functionally distinct polyclonal V2 Ab responses. We identified different patterns of V2 Ab induction by SHIV infection and three separate vaccine regimens that will aid in fine tuning an optimized immunization protocol for inducing V2p and V2i Abs. We observed no, or weak and sporadic V2p and V2i Abs in non-vaccinated Tier 1 and Tier 2 SHIV-infected NHPs, but in contrast, strong V2p and/or V2i Ab responses after immunization with a V2-targeting vaccine protocol using a prime/boost regimen with gp120 DNA and a V1V2-scaffold protein. The V2-targeting vaccine protocol is superior to both natural infection and to immunization with whole Env constructs for inducing functional V2p- and V2i-specific responses. Strikingly, levels of V2-directed Abs correlated inversely with Abs specific for gp120 and peptides of V3 and C5. These data demonstrate that a V1V2-targeting vaccine have advantages over the imprecise targeting of SIV/SHIV infections and of whole Env-based immunization regimens for inducing a more focused functional V2p- and V2i-specific Ab response.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009736
Author(s):  
Jelle van Schooten ◽  
Marlies M. van Haaren ◽  
Hui Li ◽  
Laura E. McCoy ◽  
Colin Havenar-Daughton ◽  
...  

The development of an effective human immunodeficiency virus (HIV-1) vaccine is a high global health priority. Soluble native-like HIV-1 envelope glycoprotein trimers (Env), including those based on the SOSIP design, have shown promise as vaccine candidates by inducing neutralizing antibody responses against the autologous virus in animal models. However, to overcome HIV-1’s extreme diversity a vaccine needs to induce broadly neutralizing antibodies (bNAbs). Such bNAbs can protect non-human primates (NHPs) and humans from infection. The prototypic BG505 SOSIP.664 immunogen is based on the BG505 env sequence isolated from an HIV-1-infected infant from Kenya who developed a bNAb response. Studying bNAb development during natural HIV-1 infection can inform vaccine design, however, it is unclear to what extent vaccine-induced antibody responses to Env are comparable to those induced by natural infection. Here, we compared Env antibody responses in BG505 SOSIP-immunized NHPs with those in BG505 SHIV-infected NHPs, by analyzing monoclonal antibodies (mAbs). We observed three major differences between BG505 SOSIP immunization and BG505 SHIV infection. First, SHIV infection resulted in more clonal expansion and less antibody diversity compared to SOSIP immunization, likely because of higher and/or prolonged antigenic stimulation and increased antigen diversity during infection. Second, while we retrieved comparatively fewer neutralizing mAbs (NAbs) from SOSIP-immunized animals, these NAbs targeted more diverse epitopes compared to NAbs from SHIV-infected animals. However, none of the NAbs, either elicited by vaccination or infection, showed any breadth. Finally, SOSIP immunization elicited antibodies against the base of the trimer, while infection did not, consistent with the base being placed onto the virus membrane in the latter setting. Together these data provide new insights into the antibody response against BG505 Env during infection and immunization and limitations that need to be overcome to induce better responses after vaccination.


2021 ◽  
Author(s):  
Shingo Iwami ◽  
Benjamin P Holder ◽  
Catherine A. A. Beauchemin ◽  
Satoru Morita ◽  
Tetsuko Tada ◽  
...  

Background Developing a quantitative understanding of viral kinetics is useful for determining the pathogenesis and transmissibility of the virus, predicting the course of disease, and evaluating the effects of antiviral therapy. The availability of data in clinical, animal, and cell culture studies, however, has been quite limited. Many studies of virus infection kinetics have been based solely on measures of total or infectious virus count. Here, we introduce a new mathematical model which tracks both infectious and total viral load, as well as the fraction of infected and uninfected cells within a cell culture, and apply it to analyze time-course data of an SHIV infection in vitro. Results We infected HSC-F cells with SHIV-KS661 and measured the concentration of Nef-negative (target) and Nef-positive (infected) HSC-F cells, the total viral load, and the infectious viral load daily for nine days. The experiments were repeated at four different MOIs, and the model was fitted to the full dataset simultaneously. Our analysis allowed us to extract an infected cell half-life of 14.1 h, a half-life of SHIV-KS661 infectiousness of 17.9 h, a virus burst size of 22.1 thousand RNA copies or 0.19 TCID50, and a basic reproductive number of 62.8. Furthermore, we calculated that SHIV-KS661 virus-infected cells produce at least 1 infectious virion for every 350 virions produced. Conclusions Our method, combining in vitro experiments and a mathematical model, provides detailed quantitative insights into the kinetics of the SHIV infection which could be used to significantly improve the understanding of SHIV and HIV-1 pathogenesis. The method could also be applied to other viral infections and used to improve the in vitro determination of the effect and efficacy of antiviral compounds.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1609
Author(s):  
Megan A. O’Connor ◽  
Paul V. Munson ◽  
Sandra E. Dross ◽  
Hillary C. Tunggal ◽  
Thomas B. Lewis ◽  
...  

Selection of a pre-clinical non-human primate (NHP) model is essential when evaluating therapeutic vaccine and treatment strategies for HIV. SIV and SHIV-infected NHPs exhibit a range of viral burdens, pathologies, and responses to combinatorial antiretroviral therapy (cART) regimens and the choice of the NHP model for AIDS could influence outcomes in studies investigating interventions. Previously, in rhesus macaques (RMs) we showed that maintenance of mucosal Th17/Treg homeostasis during SIV infection correlated with a better virological response to cART. Here, in RMs we compared viral kinetics and dysregulation of gut homeostasis, defined by T cell subset disruption, during highly pathogenic SIVΔB670 compared to SHIV-1157ipd3N4 infection. SHIV infection resulted in lower acute viremia and less disruption to gut CD4 T-cell homeostasis. Additionally, 24/24 SHIV-infected versus 10/19 SIV-infected animals had sustained viral suppression <100 copies/mL of plasma after 5 months of cART. Significantly, the more profound viral suppression during cART in a subset of SIV and all SHIV-infected RMs corresponded with less gut immune dysregulation during acute SIV/SHIV infection, defined by maintenance of the Th17/Treg ratio. These results highlight significant differences in viral control during cART and gut dysregulation in NHP AIDS models and suggest that selection of a model may impact the evaluation of candidate therapeutic interventions for HIV treatment and cure strategies.


2021 ◽  
Author(s):  
Nan Gao ◽  
Yanxin Gai ◽  
Lina Meng ◽  
Chu Wang ◽  
Wei Wang ◽  
...  

Understanding maturation pathways of broadly neutralizing antibodies (bnAbs) against HIV-1 in non-human primates can be highly informative for HIV-1 vaccine development. We now obtained a lineage of J038 from Chinese rhesus macaques after 7-years of SHIV infection. J038 has short complementary determining loops and neutralizes 54% of global circulating HIV-1 strains. Its binding induces a unique 'up' conformation for one of the V2 loops in the trimeric envelope glycoprotein (Env) and is heavily dependent on glycan, which provides nearly half of the binding surface. The unmutated common ancestor of the J038 lineage antibodies binds monomeric gp120 and neutralizes the autologous virus. Continuous maturation enhances neutralization potency and breadth of J038 lineage antibodies via expanding antibody-Env contact areas surrounding the core region contacted by germline-encoded residues. Developmental details and recognition features of J038 lineage antibodies revealed here provide a new pathway for maturation elicitation of V2-targeting bnAbs.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009738
Author(s):  
Jing Wen ◽  
Tracy Cheever ◽  
Lan Wang ◽  
Di Wu ◽  
Jason Reed ◽  
...  

Broadly neutralizing antibodies (bNAbs) directed to HIV-1 have shown promise at suppressing viremia in animal models. However, the use of bNAbs for the central nervous system (CNS) infection is confounded by poor penetration of the blood brain barrier (BBB). Typically, antibody concentrations in the CNS are extremely low; with levels in cerebrospinal fluid (CSF) only 0.1% of blood concentrations. Using a novel nanotechnology platform, which we term nanocapsules, we show effective transportation of the human bNAb PGT121 across the BBB in infant rhesus macaques upon systemic administration up to 1.6% of plasma concentration. We demonstrate that a single dose of PGT121 encased in nanocapsules when delivered at 48h post-infection delays early acute infection with SHIVSF162P3 in infants, with one of four animals demonstrating viral clearance. Importantly, the nanocapsule delivery of PGT121 improves suppression of SHIV infection in the CNS relative to controls.


Sign in / Sign up

Export Citation Format

Share Document