Effect of inoculation with Penicillium chrysogenum on chemical components and fungal communities in fermentation of Pu-erh tea

2021 ◽  
pp. 110748
Author(s):  
Kunyi Liu ◽  
Liyan Wang ◽  
Bin Jiang ◽  
Jiangshan An ◽  
Bo Nian ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jingzhong Chen ◽  
Xiaolong Huang ◽  
Bingli Tong ◽  
Deng Wang ◽  
Jiming Liu ◽  
...  

Abstract Background This study examined how rhizosphere fungi influence the accumulation of chemical components in fruits of a small population species of Cinnamomum migao. Results Ascomycota and Basidiomycota were dominant in the rhizosphere fungal community of C. migao. Pestalotiopsis and Gibellulopsis were associated with α-Terpineol and sabinene content, and Gibellulopsis was associated with crude fat and carbohydrate content. There were significant differences in rhizosphere fungal populations between watersheds, and there was no obvious change between fruiting periods. Gibberella, Ilyonectria, Micropsalliota, and Geminibasidium promoted sabinene accumulation, and Clitocybula promoted α-Terpineol accumulation. Conclusion The climate-related differentiation of rhizosphere fungal communities in watershed areas is the main driver of the chemical composition of C. migao fruit. The control of the production of biologically active compounds by the rhizosphere fungal community provides new opportunities to increase the industrial and medicinal value of the fruit of C. migao.


1983 ◽  
Vol 61 (2) ◽  
pp. 594-602 ◽  
Author(s):  
Sr. Kathleen Angel ◽  
D. T. Wlcklow

This investigation examined the composition of coprophilous fungal communities, with emphasis on the ascomycetous components thereof, on rabbit and cattle feces collected from short-grass (Nunn, CO), mixed-grass (Cottonwood, SD), and tall-grass (Shidler, OK) prairie ecosystems in the western United States. Fungal communities recorded for one dung type were always more similar to one another than to fungal communities from the other dung type, regardless of the grassland site from which samples were collected. The composition of the fungal community varied according to the age of the dung collected. Comparison of fungal communities on six age classes (0–54 months field exposure) of cattle dung from a semiarid grassland showed that communities were most similar on fecal collections nearest in age. The largest number of fungal species was recorded on fecal collections from the semiarid short-grass prairie. These results contrast sharply with species diversity patterns of other organism groups inhabiting these same grasslands. A hypothesis is presented that the greater species abundance of coprophilous fungal communities in semiarid grasslands is related to the slower rate of decomposition of individual fecal substrates and, thus, the availability of long-lived resource islands capable of supporting successive populations of fungal colonists. Communities on dung from the drier prairie sites (short grass and mixed grass) were more similar to one another than to communities from the more mesic tall-grass prairie. These results are contrasted with between-site comparisons of seed plants and small mammals. With one exception, decomposition dry weight losses during moist-chamber incubation for 80 days did not differ significantly (p > 0.05) among cattle dung samples regardless of the time dung was incubated in the field. Chemical analyses performed initially on field-aged cattle dung from the short-grass prairie site revealed similar percentages of various chemical components and this may account for the similarity of weight loss during moist-chamber incubation.


2021 ◽  
Vol 13 (14) ◽  
pp. 7590
Author(s):  
Xia Yang ◽  
Yumei Liang ◽  
Yong Gao ◽  
Ruidong Wang

With the increase in setting years in deserts, Salix psammophila sand barriers with different degrees of lodging damage caused by decay are losing wind-prevention and sand-fixation properties. In this study, we focus on the change in chemical properties of soils, and physical and mechanical properties of plants along different setting years; meanwhile, the change in fungal communities has been analyzed using high-throughput sequencing technology. The results show that a change in physical and mechanical properties and the loss of primary chemical components led to the degradation of the protective properties of the barrier to different degrees. After five years of setting, the physical parameters of basic density and shrinkage rate decreased by 44.04% and 28.68%, respectively, and the loss of the modulus of rupture mechanical index declined by 62.72%. After seven years of setting, the mechanical indexes of the modulus of rupture decreased by 76.95%. Five and seven years represented important inflection points in the decay process. Sordariomycetes (53.75%) and Eurotiomycetes (19.78%) were the main fungal groups present during the decay of the sand barrier. The basic density, moisture content, cellulose, and lignin of the sand barrier were the main driving factors affecting the distribution of fungal communities. The mechanism on fungal community to the decay of sand barriers still needs further studies to keep the function of sand barriers in fragile desert ecosystems.


2018 ◽  
Vol 13 (4) ◽  
pp. 1934578X1801300
Author(s):  
Xiao-Yong Zhang ◽  
Muhammad Amin ◽  
Xin-Ya Xu ◽  
Shu-Hua Qi

Extracts of the culture broths of Aspergillus sydowii SCSIO 00305 and Penicillium chrysogenum SCSIO 00258 exhibited a relatively broad spectrum of antifouling activity against various biofoulers. The main chemical components of their bioactive fractions were analyzed and identified by LC-MS and from literature data. Two bioactive fractions comprised of 1α-methoxyroquefortine C, meleagrin, roquefortine C and isoroquefortine C exhibited more significant anti-barnacle activity than meleagrin in field bioassays, suggesting that the combination of different bioactive compounds could display a stronger antifouling activity than a single compound in the complicated marine ecological environments.


2021 ◽  
Vol 9 (10) ◽  
pp. 2051
Author(s):  
Camille Marchal ◽  
Joaquim Germain ◽  
Muriel Raveton ◽  
Blandine Lyonnard ◽  
Cindy Arnoldi ◽  
...  

Polychlorinated biphenyls (PCBs) belong to the organic pollutants that are toxic to humans and harmful to environments. Numerous studies dealing with the impact of PCBs on soil microorganisms have focused on bacterial communities. The effects of PCBs on fungal communities in three different PCB-polluted soils from former industrial sites were investigated using high-throughput sequencing of the internal transcribed spacer 1 region. Significant differences in fungal alpha diversity were observed mainly due to soil physico-chemical properties. PCBs only influenced the richness of the fungal communities by increasing it. Fungal composition was rather strongly influenced by both PCBs and soil properties, resulting in different communities associated with each soil. Sixteen Ascomycota species were present in all three soils, including Stachybotrys chartarum, Fusarium oxysporum, Penicillium canescens, Penicillium chrysogenum,Penicillium citrosulfuratum and Penicillium brevicompactum, which are usually found in PCB-polluted soils, and Fusarium solani, Penicillium canescens, Penicillium citrosulfuratum and Penicillium chrysogenum, which are known PCB degraders. This study demonstrated that PCBs influence the richness and the composition of fungal communities. Their influence, associated with that of soil physico-chemical properties, led to distinct fungal communities, but with sixteen species common to the three soils which could be considered as ubiquitous species in PCB-polluted soils.


Author(s):  
V.A. Munoz ◽  
R.J. Mikula ◽  
C. Payette ◽  
W.W. Lam

The transformation of high molecular weight components present in heavy oils into useable liquid fuels requires their decomposition by means of a variety of processes. The low molecular weight species produced recombine under controlled conditions to generate synthetic fuels. However, an important fraction undergo further recombination into higher molecular weight components, leading to the formation of coke. The optical texture of the coke can be related to its originating components. Those with high sulfur and oxygen content tend to produce cokes with small optical texture or fine mosaic, whereas compounds with relatively high hydrogen content are likely to produce large optical texture or domains. In addition, the structure of the parent chemical components, planar or nonplanar, determines the isotropic or anisotropic character of the coke. Planar molecules have a tendency to align in an approximately parallel arrangement to initiate the formation of the nematic mesophase leading to the formation of anisotropic coke. Nonplanar highly alkylated compounds and/or those rich in polar groups form isotropic coke. The aliphatic branches produce steric hindrance to alignment, whereas the polar groups participate in cross-linking reactions.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
J Ko ◽  
K Woo ◽  
S Song ◽  
J Lee ◽  
M Seo ◽  
...  

2019 ◽  
Author(s):  
Coline Deveautour ◽  
Suzanne Donn ◽  
Sally Power ◽  
Kirk Barnett ◽  
Jeff Powell

Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterised arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
SANJAY A. KHAIRNAR

In modern era about 80% of the world population depends on herbal alternative system of medicine. Seventy thousand plants are used in medicine and about 2000 plants are used in Indian Ayurveda. The activities of the curative plants are evaluated by their chemical components. Few of them are important as a medicine but also posses poisonous or toxic properties. The toxicity is produced in them due to the synthesis of toxic chemical compounds may be in primary or secondary phase of their life. Most of the users of such medicinal plants in crude form are tribal and peoples living in the forests and their domestic stock . Most of the time these peoples may not aware about the toxicity of such plants used by them and probably get affected sometimes even leads to death. In the study area during the field survey of poisonous plants, information are gathered from the traditional practicing persons, cow boy and from shepherds. About 20 plant species belonging to 17 families are reported as a medicinal as well as toxic. From the available literature, nature of toxic compound and symptoms of their intake on human being are recorded. In the study area the plants like, Abrus precatorious commonly known as a Gunj or Gunjpala, Jatropha curcas , (Biodiesel plant), Croton tiglium (Jamalgota), Citrullus colocynthis (Kadu Indrawan, Girardinia diversifolia (Agya), Mucuna purriens (Khajkuairi), Euphorbia tirucali (Sher), E. ligularia (Sabarkand), Datura metel ( Kala Dhotara), Datura inoxia (Pandhara Dhotara) and Asparagus racemo-sus (Shatavari) etc . are some of the toxic plants used as a medicine and harmful also.


Sign in / Sign up

Export Citation Format

Share Document