spatiotemporal localization
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 3)

Cell Reports ◽  
2021 ◽  
Vol 37 (13) ◽  
pp. 110154
Author(s):  
Junhao Zhu ◽  
Ian D. Wolf ◽  
Charles L. Dulberger ◽  
Harim I. Won ◽  
Jemila C. Kester ◽  
...  

2021 ◽  
Vol 22 (20) ◽  
pp. 11169
Author(s):  
Shingo Saio ◽  
Kanna Konishi ◽  
Hirofumi Hohjoh ◽  
Yuki Tamura ◽  
Teruaki Masutani ◽  
...  

Endothelial cells acquire different phenotypes to establish functional vascular networks. Vascular endothelial growth factor (VEGF) signaling induces endothelial proliferation, migration, and survival to regulate vascular development, which leads to the construction of a vascular plexuses with a regular morphology. The spatiotemporal localization of angiogenic factors and the extracellular matrix play fundamental roles in ensuring the proper regulation of angiogenesis. This review article highlights how and what kinds of extracellular environmental molecules regulate angiogenesis. Close interactions between the vascular and neural systems involve shared molecular mechanisms to coordinate developmental and regenerative processes. This review article focuses on current knowledge about the roles of angiogenesis in peripheral nerve regeneration and the latest therapeutic strategies for the treatment of peripheral nerve injury.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jesse R Holt ◽  
Wei-Zheng Zeng ◽  
Elizabeth L Evans ◽  
Seung-Hyun Woo ◽  
Shang Ma ◽  
...  

Keratinocytes, the predominant cell type of the epidermis, migrate to reinstate the epithelial barrier during wound healing. Mechanical cues are known to regulate keratinocyte re-epithelialization and wound healing however, the underlying molecular transducers and biophysical mechanisms remain elusive. Here, we show through molecular, cellular and organismal studies that the mechanically-activated ion channel PIEZO1 regulates keratinocyte migration and wound healing. Epidermal-specific Piezo1 knockout mice exhibited faster wound closure while gain-of-function mice displayed slower wound closure compared to littermate controls. By imaging the spatiotemporal localization dynamics of endogenous PIEZO1 channels we find that channel enrichment at some regions of the wound edge induces a localized cellular retraction that slows keratinocyte collective migration. In migrating single keratinocytes, PIEZO1 is enriched at the rear of the cell, where maximal retraction occurs, and we find that chemical activation of PIEZO1 enhances retraction during single as well as collective migration. Our findings uncover novel molecular mechanisms underlying single and collective keratinocyte migration that may suggest a potential pharmacological target for wound treatment. More broadly, we show that nanoscale spatiotemporal dynamics of Piezo1 channels can control tissue-scale events, a finding with implications beyond wound healing to processes as diverse as development, homeostasis, disease and repair.


2021 ◽  
Author(s):  
Takayuki Torisawa ◽  
Akatsuki Kimura

Cytoplasmic dynein is responsible for various cellular processes during the cell cycle. The mechanism by which its activity is regulated spatially and temporarily inside the cell remains elusive. There are various regulatory proteins of dynein, including dynactin, NDEL1/NUD-2, and LIS1. Characterizing the spatiotemporal localization of regulatory proteins in vivo will aid understanding of the cellular regulation of dynein. Here, we focused on spindle formation in the Caenorhabditis elegans early embryo, wherein dynein and its regulatory proteins translocated from the cytoplasm to the spindle region upon nuclear envelope breakdown (NEBD). We found that (i) a limited set of dynein regulatory proteins accumulated in the spindle region, (ii) the spatial localization patterns were distinct among the regulators, and (iii) the regulatory proteins did not accumulate in the spindle region simultaneously but sequentially. Furthermore, the accumulation of NUD-2 was unique among the regulators. NUD-2 started to accumulate before NEBD (pre-NEBD accumulation), and exhibited the highest enrichment compared to the cytoplasmic concentration. Using a protein injection approach, we revealed that the C-terminal helix of NUD-2 was responsible for pre-NEBD accumulation. These findings suggest a fine temporal control of the subcellular localization of regulatory proteins.


2021 ◽  
Vol 22 (17) ◽  
pp. 9346
Author(s):  
Thorben Sprink ◽  
Frank Hartung

In the past, major findings in meiosis have been achieved, but questions towards the global understanding of meiosis remain concealed. In plants, one of these questions covers the need for two diverse meiotic active SPO11 proteins. In Arabidopsis and other plants, both meiotic SPO11 are indispensable in a functional form for double strand break induction during meiotic prophase I. This stands in contrast to mammals and fungi, where a single SPO11 is present and sufficient. We aimed to investigate the specific function and evolution of both meiotic SPO11 paralogs in land plants. By performing immunostaining of both SPO11-1 and -2, an investigation of the spatiotemporal localization of each SPO11 during meiosis was achieved. We further exchanged SPO11-1 and -2 in Arabidopsis and could show a species-specific function of the respective SPO11. By additional changes of regions between SPO11-1 and -2, a sequence-specific function for both the SPO11 proteins was revealed. Furthermore, the previous findings about the aberrant splicing of each SPO11 were refined by narrowing them down to a specific developmental phase. These findings let us suggest that the function of both SPO11 paralogs is highly sequence specific and that the orthologs are species specific.


2021 ◽  
Vol 12 ◽  
Author(s):  
Erick Eligio Arroyo-Pérez ◽  
Simon Ringgaard

Failure of the cell to properly regulate the number and intracellular positioning of their flagella, has detrimental effects on the cells’ swimming ability. The flagellation pattern of numerous bacteria is regulated by the NTPases FlhF and FlhG. In general, FlhG controls the number of flagella produced, whereas FlhF coordinates the position of the flagella. In the human pathogen Vibrio parahaemolyticus, its single flagellum is positioned and formed at the old cell pole. Here, we describe the spatiotemporal localization of FlhF and FlhG in V. parahaemolyticus and their effect on swimming motility. Absence of either FlhF or FlhG caused a significant defect in swimming ability, resulting in absence of flagella in a ΔflhF mutant and an aberrant flagellated phenotype in ΔflhG. Both proteins localized to the cell pole in a cell cycle-dependent manner, but displayed different patterns of localization throughout the cell cycle. FlhF transitioned from a uni- to bi-polar localization, as observed in other polarly flagellated bacteria. Localization of FlhG was strictly dependent on the cell pole-determinant HubP, while polar localization of FlhF was HubP independent. Furthermore, localization of FlhF and FlhG was interdependent and required for each other’s proper intracellular localization and recruitment to the cell pole. In the absence of HubP or FlhF, FlhG forms non-polar foci in the cytoplasm of the cell, suggesting the possibility of a secondary localization site within the cell besides its recruitment to the cell poles.


2021 ◽  
Author(s):  
Nicholas M. Negretti ◽  
Erin J. Plosa ◽  
John T. Benjamin ◽  
Bryce A. Schuler ◽  
A. Christian Habermann ◽  
...  

SummaryLung organogenesis requires precisely timed shifts in the spatial organization and function of parenchymal cells, especially during the later stages of lung development. To investigate the mechanisms governing lung parenchymal dynamics during development, we performed a single cell RNA sequencing (scRNA-seq) time-series yielding 92,238 epithelial, endothelial, and mesenchymal cells across 8 time points from embryonic day 12 (E12) to postnatal day 14 (P14) in mice. We combined new computational analyses with RNA in situ hybridization to explore transcriptional velocity, fate likelihood prediction, and spatiotemporal localization of cell populations during the transition between the saccular and alveolar stages. We interrogated this atlas to illustrate the complexity of type 1 pneumocyte function during the saccular and alveolar stages, and we demonstrate an integrated view of the cellular dynamics during lung development.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242286
Author(s):  
Katsumasa Ideo ◽  
Takuya Tokunaga ◽  
Chisa Shukunami ◽  
Aki Takimoto ◽  
Yuki Yoshimoto ◽  
...  

A multipotent cell population co-expressing a basic-helix-loop-helix transcription factor scleraxis (Scx) and SRY-box 9 (Sox9) has been shown to contribute to the establishment of entheses (tendon attachment sites) during mouse embryonic development. The present study aimed to investigate the involvement of Scx+/Sox9+ cells in the postnatal formation of fibrocartilaginous entheses and in the healing process after injury, using ScxGFP transgenic mice. We demonstrate that Scx+/Sox9+ cells are localized in layers at the insertion site during the postnatal formation of fibrocartilaginous entheses of supraspinatus tendon until postnatal 3 weeks. Further, these cells were rarely seen at postnatal 6 weeks, when mature fibrocartilaginous entheses were formed. Furthermore, we investigated the involvement of Scx+/Sox9+ cells in the healing process after supraspinatus tendon enthesis injury, comparing the responses of 20- and 3-week-old mice. In the healing process of 20-week-old mice with disorganized fibrovascular tissue in response to injury, a small number of Scx+/Sox9+ cells transiently appeared from 1 week after injury, but they were rarely seen at 4 weeks after injury. Meanwhile, in 3-week-old mice, a thin layer of fibrocartilaginous tissue with calcification was formed at healing enthesis at 4 weeks after injury. From 1 to 2 weeks after injury, more Scx+/Sox9+ cells, widely distributed at the injured site, were seen compared with the 20-week-old mice. At 4 weeks after injury, these cells were located near the surface of the recreated fibrocartilaginous layer. This spatiotemporal localization pattern of Scx+/Sox9+ cells at the injured enthesis in our 3-week-old mouse model was similar to that in postnatal fibrocartilaginous enthesis formation. These findings indicate that Scx+/Sox9+ cells may have a role as entheseal progenitor-like cells during postnatal maturation of fibrocartilaginous entheses and healing after injury in a manner similar to that seen in embryonic development.


2020 ◽  
Author(s):  
Andriani Mentzelopoulou ◽  
Chen Liu ◽  
Panagiotis Nikolaou Moschou

ABSTRACTFluorescent labelling of proteins without compromising their activity is crucial for determining their spatiotemporal localization while retaining their functionality. Spot-tag is a 12-amino acid peptide recognized by a single-domain nanobody. Here we introduce the spot-tag as a labelling strategy for proteins in fixed and living plant cells, using as an example the microtubule motor centromeric protein E-related Kinesin 7.3. Spot-tagging of ectopically introduced Kinesin 7.3 does not interfere with microtubules and spot staining results in a close-grained fluorophore labelling revealing a localization pattern that resembles “beads-on-a-string”. We anticipate that our protocol will apply to many more demanding protein cellular targets, offsetting activity perturbations and low photon quantum yields imposed by other protein-tagging approaches.


Sign in / Sign up

Export Citation Format

Share Document