scholarly journals Nanoparticle-Based Modification of the DNA Methylome: A Therapeutic Tool for Atherosclerosis?

2022 ◽  
Vol 12 (1) ◽  
pp. 12-23
Author(s):  
Ana Cristina Márquez-Sánchez ◽  
Lino Sánchez-Segura ◽  
Gertrud Lund ◽  
Silvio Zaina

Cardiovascular epigenomics is a relatively young field of research, yet it is providing novel insights into gene regulation in the atherosclerotic arterial wall. That information is already pointing to new avenues for atherosclerosis (AS) prevention and therapy. In parallel, advances in nanoparticle (NP) technology allow effective targeting of drugs and bioactive molecules to the vascular wall. The partnership of NP technology and epigenetics in AS is just beginning and promises to produce novel exciting candidate treatments. Here, we briefly discuss the most relevant recent advances in the two fields. We focus on AS and DNA methylation, as the DNA methylome of that condition is better understood in comparison with the rest of the cardiovascular disease field. In particular, we review the most recent advances in NP-based delivery systems and their use for DNA methylome modification in inflammation. We also address the promises of DNA methyltransferase inhibitors for prevention and therapy. Furthermore, we emphasize the unique challenges in designing therapies that target the cardiovascular epigenome. Lastly, we touch the issue of human exposure to industrial NPs and its impact on the epigenome as a reminder of the undesired effects that any NP-based therapy must avoid to be apt for secondary prevention of AS.

Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Liliana Burlibaşa ◽  
Alina-Teodora Nicu ◽  
Carmen Domnariu

Summary The process of cytodifferentiation in spermatogenesis is governed by a unique genetic and molecular programme. In this context, accurate ‘tuning’ of the regulatory mechanisms involved in germ cells differentiation is required, as any error could have dramatic consequences on species survival and maintenance. To study the processes that govern the spatial–temporal expression of genes, as well as analyse transmission of epigenetic information to descendants, an integrated approach of genetics, biochemistry and cytology data is necessary. As information in the literature on interplay between DNA methylation and histone H3 lysine 4 trimethylation (H3K4me3) in the advanced stages of murine spermatogenesis is still scarce, we investigated the effect of a DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine, at the cytological level using immunocytochemistry methodology. Our results revealed a particular distribution of H3K4me3 during sperm cell differentiation and highlighted an important role for regulation of DNA methylation in controlling histone methylation and chromatin remodelling during spermatogenesis.


2020 ◽  
Vol 14 (1) ◽  
pp. 17
Author(s):  
K. Eurídice Juárez-Mercado ◽  
Fernando D. Prieto-Martínez ◽  
Norberto Sánchez-Cruz ◽  
Andrea Peña-Castillo ◽  
Diego Prada-Gracia ◽  
...  

Inhibitors of DNA methyltransferases (DNMTs) are attractive compounds for epigenetic drug discovery. They are also chemical tools to understand the biochemistry of epigenetic processes. Herein, we report five distinct inhibitors of DNMT1 characterized in enzymatic inhibition assays that did not show activity with DNMT3B. It was concluded that the dietary component theaflavin is an inhibitor of DNMT1. Two additional novel inhibitors of DNMT1 are the approved drugs glyburide and panobinostat. The DNMT1 enzymatic inhibitory activity of panobinostat, a known pan inhibitor of histone deacetylases, agrees with experimental reports of its ability to reduce DNMT1 activity in liver cancer cell lines. Molecular docking of the active compounds with DNMT1, and re-scoring with the recently developed extended connectivity interaction features approach, led to an excellent agreement between the experimental IC50 values and docking scores.


Author(s):  
Nicola Simola ◽  
Micaela Morelli ◽  
Tooru Mizuno ◽  
Suzanne H. Mitchell ◽  
Harriet de Wit ◽  
...  

2019 ◽  
Vol 20 (16) ◽  
pp. 1151-1157 ◽  
Author(s):  
Jia Yu ◽  
Jacqueline Zayas ◽  
Bo Qin ◽  
Liewei Wang

Triple-negative breast cancer (TNBC) accounts for 15–20% of all invasive breast cancers and tends to have aggressive histological features and poor clinical outcomes. Unlike, estrogen receptor- or HER2-positive diseases, TNBC patients currently lack the US FDA-approved targeted therapies. DNA methylation is a critical mechanism of epigenetic modification. It is well known that aberrant DNA methylation contributes to the malignant transformation of cells by silencing critical tumor suppressor genes. DNA methyltransferase inhibitors reactivate silenced tumor suppressor genes and result in tumor growth arrest, with therapeutic effects observed in patients with hematologic malignancies. The antitumor effect of these DNA methyltransferase inhibitors has also been explored in solid tumors, especially in TNBC that currently lacks targeted therapies.


Leukemia ◽  
2019 ◽  
Vol 34 (3) ◽  
pp. 938-941 ◽  
Author(s):  
Priya Choudhry ◽  
Margarette C. Mariano ◽  
Huimin Geng ◽  
Thomas G. Martin ◽  
Jeffrey L. Wolf ◽  
...  

2011 ◽  
Vol 130 (5) ◽  
pp. 1195-1207 ◽  
Author(s):  
María J. Ruiz-Magaña ◽  
Jose M. Rodríguez-Vargas ◽  
Jorge C. Morales ◽  
Manuel A. Saldivia ◽  
Klaus Schulze-Osthoff ◽  
...  

2014 ◽  
Vol 290 (10) ◽  
pp. 6293-6302 ◽  
Author(s):  
Christina Gros ◽  
Laurence Fleury ◽  
Virginie Nahoum ◽  
Céline Faux ◽  
Sergio Valente ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document