Assessment of Crop Residues for Power Generation and Optimal Sites for Biomass Power Plants Using NDVI and Landsat8 Bands in Punjab, India

Author(s):  
Harpreet Singh Dhaliwal ◽  
Yadwinder Singh Brar ◽  
Gursewak Singh Brar
Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3957
Author(s):  
Hui Huang ◽  
Xiaoli Yan ◽  
Shizhong Song ◽  
Yingying Du ◽  
Yanlei Guo

Biomass is the fourth largest energy source in the world; it is easy to store and can be converted into various kinds of renewable energies. The biomass cogeneration system is an important way to utilize biomass energy, especially in northern China. At present, there are many problems in biomass power plants in China, such as high latent heat loss of chimney and cooling towers, low power generation efficiency, and thermal efficiency. In order to solve this problem, this paper introduces low vacuum circulating water heating technology in the biomass cogeneration system, and expounds the differences between China and Western countries in biomass power plants. Based on this background, the technology is redesigned and reformed to make it more suitable for the biomass fuel varieties in the power plant location, and realize the localization of technology and the expansion of scale. The application of this improved technology in China’s biomass cogeneration project is analyzed. Based on the biomass cogeneration project in the DC County of China, the analysis confirms that the designed low vacuum circulating water heating technology is suitable for biomass power generation projects with agricultural and forestry wastes as raw materials, and its application can greatly improve the heat utilization efficiency of the whole cogeneration system. At the same time, in order to estimate the possibility of profitable investment when the key financial parameters change, the financial risk is analyzed. The results show that the probability of 90% net present value (NPV) in 15 years is between 355.28 million RMB and 623.96 million RMB, and the internal rate of return can reach 17.7%.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2802 ◽  
Author(s):  
Kaiyan Luo ◽  
Xingping Zhang ◽  
Qinliang Tan

China has a huge potential of biomass power generation since it is a big agricultural producer and abundant in agriculture straw. However, the current straw supply system cannot guarantee the feedstock sufficiency for biomass power plants. The main reason is the high costs of straw collection and transportation because farmers are scattered across the country and farming in a small-scaled method for self-support. This study aims at solving the issue with the introduction of China’s rural official organizations to collect agriculture straw in a centralized way and to share benefits with farmers. We apply the approach of multi-agent modeling and simulation to analyze the farmer’s participation behavior within a co-opetition supply strategy after the rural official organizations are incorporated. The results demonstrate that farmers’ participation is positively affected by the cooperative enthusiasm of rural official organizations. In addition to those basic factors, such as straw price, transportation cost, and shipping distance, the benefit sharing policy has a significant impact on the equilibrium percentage of the cooperative farmers. We recommend that the Chinese central government encourage and support rural official organizations to participate in the agriculture straw supply chain, and the benefit sharing policy should be implemented with the precaution against free rides.


2020 ◽  
Vol 12 (5) ◽  
pp. 1973 ◽  
Author(s):  
Lingling Wang ◽  
Tsunemi Watanabe

Given a lack of consideration for the role and importance of stakeholders and the importance of stakeholders in the operation of biomass power plants in China, a comprehensive analysis oriented toward stakeholder risk management is needed to further develop the country’s biomass energy industry. Accordingly, we analyzed institutional factors that contribute to or constrain progress in biomass power generation in China. Data were collected from 275 straw suppliers (farmers) living around a biomass power plant, 15 middlemen, five power plant managers, and five local government officers. Interviews were held with all the participants, but questionnaires were additionally administered to the straw suppliers. Results showed that: (1) risk transfer in the biomass supply chain is one of the reasons why farmers are unwilling to supply straw; (2) middlemen are vital intermediaries between biomass power plant managers and farmers as a middleman-based biomass supply system is necessary to guarantee the quantity of straw supply, and; (3) the institutional structure that underlies the Chinese biomass energy industry is immature.


2019 ◽  
Vol 11 (24) ◽  
pp. 7004 ◽  
Author(s):  
Yongzhong Jiang ◽  
Valerii Havrysh ◽  
Oleksandr Klymchuk ◽  
Vitalii Nitsenko ◽  
Tomas Balezentis ◽  
...  

Renewable energy is expected to play a significant role in power generation. The European Union, the USA, China, and others, are striving to limit the use of energy crop for energy production and to increase the use of crop residue both on the field and for energy generation processes. Therefore, crop residue may become a major energy source, with Ukraine following this course. Currently in Ukraine, renewable power generation does not exceed 10% of total electricity production. Despite a highly developed agriculture sector, there are only a small number of biomass power plants which burn crop residues. To identify possibilities for renewable power generation, the quantity of crop residues, their energy potential, and potential electricity generation were appraised. Cluster analysis was used to identify regions with the highest electricity consumption and crop residue energy potential. The major crops (wheat, barley, rapeseed, sunflower, and soybean) were considered in this study. A national production of crop residue for energy production of 48.66 million tons was estimated for 2018. The availability of crop residues was analyzed taking into account the harvest, residue-to-crop ratio, and residue removal rate. The crop residue energy potential of Ukraine has been estimated at 774.46 PJ. Power generation technologies have been analyzed. This study clearly shows that crop residue may generate between 27 and 108 billion kWh of power. We have selected preferable regions for setting up crop residue power plants. The results may be useful for the development of energy policy and helpful for investors in considering power generation projects.


2021 ◽  
Vol 70 (9&10) ◽  
pp. 145
Author(s):  
Zhibin Liu ◽  
Xin Wang ◽  
Aisheng Ren

Biomass power generation has characteristics of good quality of power generation, high reliability and mature technology. It plays significant aspects in maintaining the safety of energy, optimizing energy structure, alleviating environmental pollution and promoting the economic development in the rural areas. Analyzing the investment of biomass power generation in China systematically cannot only improve the scientificity of the investment process, but also guide the industry to develop rapidly and healthily. At present, the investment areas of agricultural biomass power generation projects are too concentrated and the fuel supply is difficult, which affect the normal operation of biomass power plants and lead to loss or on the verge of profit and loss of biomass power generation plants. This paper constructed the optimal model of investment location of agricultural biomass power generation projects using the iterative gravity algorithm based on the key factors analysis to affect the operation costs of agricultural biomass power plants. The model optimized the transportation lines and transportation distance, and gained the smallest transport costs of power generation materials after a few iterative calculations. This paper took Huantai County as an example, and determined the optimal investment location of agricultural biomass power project using the Region props toolbox of Matlab 7.4. The simulating calculation of Huantai County showed that the results given by this model are reliable, and this method to select the investment location of agricultural biomass power projects is feasible and effective.


Author(s):  
Mohammad Reza Mohaghegh ◽  
Mohammad Heidari ◽  
Syeda Tasnim ◽  
Animesh Dutta ◽  
Shohel Mahmud

2021 ◽  
Vol 11 (15) ◽  
pp. 6887
Author(s):  
Chung-Hong Lee ◽  
Hsin-Chang Yang ◽  
Guan-Bo Ye

In recent years, many countries have provided promotion policies related to renewable energy in order to take advantage of the environmental factors of sufficient sunlight. However, the application of solar energy in the power grid also has disadvantages. The most obvious is the variability of power output, which will put pressure on the system. As more grid reserves are needed to compensate for fluctuations in power output, the variable nature of solar power may hinder further deployment. Besides, one of the main issues surrounding solar energy is the variability and unpredictability of sunlight. If it is cloudy or covered by clouds during the day, the photovoltaic cell cannot produce satisfactory electricity. How to collect relevant factors (variables) and data to make predictions so that the solar system can increase the power generation of solar power plants is an important topic that every solar supplier is constantly thinking about. The view is taken, therefore, in this work, we utilized the historical monitoring data collected by the ground-connected solar power plants to predict the power generation, using daily characteristics (24 h) to replace the usual seasonal characteristics (365 days) as the experimental basis. Further, we implemented daily numerical prediction of the whole-point power generation. The preliminary experimental evaluations demonstrate that our developed method is sensible, allowing for exploring the performance of solar power prediction.


2021 ◽  
Vol 11 (2) ◽  
pp. 727 ◽  
Author(s):  
Myeong-Hwan Hwang ◽  
Young-Gon Kim ◽  
Hae-Sol Lee ◽  
Young-Dae Kim ◽  
Hyun-Rok Cha

In recent years, photovoltaic (PV) power generation has attracted considerable attention as a new eco-friendly and renewable energy generation technology. With the recent development of semiconductor manufacturing technologies, PV power generation is gradually increasing. In this paper, we analyze the types of defects that form in PV power generation panels and propose a method for enhancing the productivity and efficiency of PV power stations by determining the defects of aging PV modules based on their temperature, power output, and panel images. The method proposed in the paper allows the replacement of individual panels that are experiencing a malfunction, thereby reducing the output loss of solar power generation plants. The aim is to develop a method that enables users to immediately check the type of failures among the six failure types that frequently occur in aging PV panels—namely, hotspot, panel breakage, connector breakage, busbar breakage, panel cell overheating, and diode failure—based on thermal images by using the failure detection system. By comparing the data acquired in the study with the thermal images of a PV power station, efficiency is increased by detecting solar module faults in deteriorated photovoltaic power plants.


Author(s):  
Yong Tian ◽  
Wen-Jing Liu ◽  
Qi-jie Jiang ◽  
Xin-Ying Xu

With the development of biomass power generation technology, biomass waste has a more excellent recycling value. The article establishes a biomass waste inventory model based on the material flow analysis method and predicts raw material waste’s energy utilization potential. The results show that the amount of biomass waste generated from 2016 to 2020 is on the rise. In 2020, biomass waste’s energy utilization can reach 107,802,300 tons, equivalent to 1,955.28PJ of energy. Through biomass energy analysis and emission analysis, the results show that the biomass waste can generate 182.02 billion kW⋅h in 2020, which can replace 35.9% of the region’s total power consumption, which is compared with the traditional power generation method under the same power generation capacity. Power generation can reduce SO2 emissions by 250,400 tons, NOx emissions by 399,300 tons, and PM10 emissions by 49,700 tons. Reduce direct economic losses by 712 million yuan. Therefore, Chinese promotion of the recycling of biomass waste and the acceleration of the biomass energy industry’s development is of great significance for reducing pollutant emissions and alleviating energy pressure.


Sign in / Sign up

Export Citation Format

Share Document