scholarly journals IMPROVING THE EFFICIENCY OF THE CONTACT FORCE METHOD OF THE ATOMIC FORCE SPECTROSCOPY

Author(s):  
Юлия Васильевна Кузнецова

Предложена методика, оптимизирующая метод контактной силовой спектроскопии. С помощью макроязыка, интегрированного в программное обеспечение NOVA установки сканирующего зондового микроскопа Solver P47, был разработан алгоритм, позволяющий анализировать силовые кривые, не покидая его основного интерфейса. Апробация метода выполнена на образцах синтезированного полимера, поскольку одним из важнейших механических свойств, определяющим их спектр областей применения, является упругость. В работе получены локальные значения модуля Юнга на поверхности полимера методом контактной силовой спектроскопии с применением скрипта YUNG, разработанного с помощью макроязыка, интегрированного в программу управления сканирующего зондового микроскопа. Показано, что применение скрипта YUNG позволяет оптимизировать метод контактной силовой спектроскопии по поиску показателя степени γ, выбору модели для расчета силы взаимодействия для дальнейшего определения локального модуля Юнга. We propose a technique that optimizing the method of contact force spectroscopy. With the help of a macro language integrated into the NOVA software of the Solver P47 scanning probe microscope, an algorithm was developed that allows analyzing force curves without leaving its main interface. The approbation of the method was done on samples of synthesized polymer, since one of the most important mechanical properties determining their range of applications is elasticity. In this paper, local values of the Young's modulus on the polymer surface are obtained by the method of contact force spectroscopy using the YUNG script developed using a macro language integrated into the control program of a scanning probe microscope. It is shown that the use of the YUNG script makes it possible to optimize the method of contact force spectroscopy by searching for the exponent γ, choosing a model for calculating the interaction force for further determination of the local Young modulus.

Author(s):  
Юлия Васильевна Кузнецова ◽  
Виолетта Андреевна Веролайнен ◽  
Светлана Сергеевна Капустина

С помощью метода контактной силовой спектроскопии на установке сканирующего зондового микроскопа Solver P47 получены локальные значения модуля Юнга на поверхности полимеров. Local values of the young's modulus on the polymer surface are obtained using the contact force spectroscopy method on the Solver P47 scanning probe microscope.


2012 ◽  
Vol 516 ◽  
pp. 402-407
Author(s):  
Jium Ming Lin ◽  
Kun Tai Cho ◽  
Po Kuang Chang

This research applied a stylus probe without balance and lever arm as in the previous design of a contact-force-controlled Scanning Probe Microscope (SPM) system. The controller integrated both Ziegler-Nichols-based and intelligent fuzzy methods; thus the systems relative stability can be reserved under the nominal conditions. In addition, one can see that both hysteresis and parameter variation effects of the force actuator can be reduced. Comparing the results with the traditional Ziegler-Nichols-based controller by simulation, one can see that the proposed systems are much more robust.


Author(s):  
S. P. Sapers ◽  
R. Clark ◽  
P. Somerville

OCLI is a leading manufacturer of thin films for optical and thermal control applications. The determination of thin film and substrate topography can be a powerful way to obtain information for deposition process design and control, and about the final thin film device properties. At OCLI we use a scanning probe microscope (SPM) in the analytical lab to obtain qualitative and quantitative data about thin film and substrate surfaces for applications in production and research and development. This manufacturing environment requires a rapid response, and a large degree of flexibility, which poses special challenges for this emerging technology. The types of information the SPM provides can be broken into three categories:(1)Imaging of surface topography for visualization purposes, especially for samples that are not SEM compatible due to size or material constraints;(2)Examination of sample surface features to make physical measurements such as surface roughness, lateral feature spacing, grain size, and surface area;(3)Determination of physical properties such as surface compliance, i.e. “hardness”, surface frictional forces, surface electrical properties.


Sign in / Sign up

Export Citation Format

Share Document