scholarly journals Environmentally Benign Phytic Acid-Based Nanocoating for Multifunctional Flame-Retardant/Antibacterial Cotton

Fibers ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 69
Author(s):  
Eva Magovac ◽  
Bojana Vončina ◽  
Ana Budimir ◽  
Igor Jordanov ◽  
Jaime C. Grunlan ◽  
...  

Environmentally benign layer-by-layer (LbL) deposition was used to obtain flame-retardant and antimicrobial cotton. Cotton was coated with 8, 10, and 12 phytic acid (PA) and chitosan (CH)-urea bilayers (BL) and then immersed into copper (II) sulfate (CuSO4) solution. Our findings were that 12 BL of PA/CH-urea + Cu2+ were able to stop flame on cotton during vertical flammability testing (VFT) with a limiting oxygen index (LOI) value of 26%. Microscale combustion calorimeter (MCC) data showed a reduction of peak heat release rates (pHRR) of more than 61%, while the reduction of total heat release (THR) was more than 54%, relative to untreated cotton. TG-IR analysis of 12 BL-treated cotton showed the release of water, methane, carbon dioxide, carbon monoxide, and aldehydes, while by adding Cu2+ ions, the treated cotton produces a lower amount of methane. Treated cotton also showed no levoglucosan. The intumescent behavior of the treatment was indicated by the bubbled structure of the post-burn char. Antibacterial testing showed a 100% reduction of Klebsiella pneumoniae and Staphylococcus aureus. In this study, cotton was successfully functionalized with a multifunctional ecologically benign flame-retardant and antibacterial nanocoating, by means of LbL deposition.

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5492
Author(s):  
Eva Magovac ◽  
Igor Jordanov ◽  
Jaime C. Grunlan ◽  
Sandra Bischof

Chemically bleached cotton fabric was treated with phytic acid (PA), chitosan (CH) and urea by means of layer-by-layer (LbL) deposition to impart flame retardant (FR) behavior using only benign and renewable molecules. Samples were treated with 8, 10, 12 and 15 bilayers (BL) of anionic PA and cationic CH, with urea mixed into the aqueous CH solution. Flammability was evaluated by measuring limiting oxygen index (LOI) and through vertical flame testing. LOI values are comparable to those obtained with commercial flame-retardant finishes, and applying 10 or more bilayers renders cotton self-extinguishing and able to pass the vertical flame test. Microscale combustion calorimeter (MCC) measurements show the average reduction of peak heat release rate (pHRR) of all treated fabrics of ~61% and the reduction of total heat release (THR) of ~74%, in comparison to untreated cotton. Decomposition temperatures peaks (T1max) measured by thermogravimetric analyzer (TG) decreased by approximately 62 °C, while an average residue at 650 °C is ~21% for 10 and more bilayers. Images of post-burn char indicate that PA/CH-urea treatment is intumescent. The ability to deposit such a safe and effective FR treatment, with relatively few layers, makes LbL an alternative to current commercial treatments.


2016 ◽  
Vol 87 (11) ◽  
pp. 1367-1376 ◽  
Author(s):  
Chaohong Dong ◽  
Zhou Lu ◽  
Peng Wang ◽  
Ping Zhu ◽  
Xuechao Li ◽  
...  

A novel formaldehyde-free flame retardant containing phosphorus and dichlorotriazine components (CTAP) for cotton fabrics was synthesized. As an active group, the dichlorotriazine could react with cotton fabric via covalent reaction. The addition of 20.7 wt% CTAP into the cotton fabric obtained a high limiting oxygen index value of 31.5%, which was 13.5% higher than the pure cotton fabric. The results of heat release rate, total heat release and effective heat combustion indicated that CTAP effectively imparted flame retardancy to cotton fabric by the cone calorimetry test. With respect to the untreated cotton fabrics, the treated cotton fabrics degraded at lower decomposition temperature and form a consistent and compact char layer, which could be observed by thermogravimetric analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. Compared to the untreated cotton fabrics, CTAP performed an effective role in flame retardancy for treated cotton fabrics. Meanwhile, it stimulated the formation of char and promoted the thermal stability of treated cotton fabrics during combustion.


Fibers ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 85 ◽  
Author(s):  
SeChin Chang ◽  
Brian Condon ◽  
Jade Smith

Innovative approaches for preparing flame retardant cotton fabrics were employed by utilizing a microwave-assisted technique with a minimum amount of co-solvent. Our attempts at flame retardant cotton fabrics treated with low cost inorganic formulations, such as urea and diammonium phosphate, were done successfully. The evidence of flame retardant chemical penetrations or surface modification of cotton fabrics was confirmed by scanning electron microscope (SEM) and the treated cotton fabrics were evaluated by flammability tests, such as 45° angle (clothing textiles test), vertical flame (clothing textile test) and limiting oxygen index (LOI). For formulations with urea only, LOI values of treated fabrics were 21.0–22.0% after add-on values for the formulation were 5.16–18.22%. For formulations comprising urea with diammonium phosphate, LOI values were greater than 29.0% after add-on values for the formulation were 1.85–7.73%. With the formulation comprising urea and diammonium phosphate, all treated fabrics passed the vertical flame test for add-on values 5.34–7.73%. Their char lengths were less than half the length of the original fabric and after-flame and after-glow times were less than 3.2 s. Additional thermal properties of desired products will be discussed using thermogravimetric analysis (TGA) and microscale combustion calorimeter (MCC).


2020 ◽  
Vol 49 (1) ◽  
pp. 71-78
Author(s):  
Jia Xu ◽  
Jing Yu Zhang ◽  
Jiahan Xu ◽  
Yuqi Chang ◽  
Feilong Shi ◽  
...  

Purpose One of the intensively developed in recent years new materials are hybrid textiles modified with carbon nanotubes (CNT). In this paper, CNTs was modified by grafting dimethyl phosphite and perfluorohexyl iodine. It was applied to the cotton to obtain the flame-retardant, water-repellent, ultraviolet-resistant and conductive multifunctional fabric. Design/methodology/approach The modified CNTs were loaded onto cotton fabric by impregnation and drying. The CNTs-multi was synthesized by grafted dimethyl phosphite and perfluorohexyl chain and applied to the cotton by dipping-drying method. The surface chemistry of functionalized CNTs was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS). The combustion properties were evaluated using a microscale combustion calorimeter, match test and TGA analysis. Surface hydrophilicity and hydrophobicity of fabric surface was characterized by static contact angle, and the UV resistance of the fabric was represented by the UPF value. Findings Dimethyl phosphite and perfluorohexyl chain were grafted on the surface of CNTs successively. The quantity of each component on the surface of CNTs was calculated according to XPS results. According to miniature combustion calorimeter data, both the value of maximum heat release rate (PHRR) and total heat release (THR) of CNTs -multi/cotton was about 65% lower than that of untreated cotton fabric. The residue after combustion of CNTs -multi/ cotton in the match test was more compact. The electrical conductivity of multi/ cotton is 225.6 kΩ/□, which is better than that of untreated cotton fabric. The UPF value of CNTs-multi/cotton reached 121, which was indicated that the anti-ultraviolet performance of CNTs-multi was greatly improved. Research limitations/implications Modifying method to increase the functional component amuount on the CNTs surface still need to be explored, which could increase the hydrophobicity. How to further improve the functional effect and the general synthetic steps will be of great significance to the preparation of multifunctional modified cotton fabric. Practical implications This modifying method can be used in any of multifunctional textile preparation process. The UV-resistant and flame retardant cotton fabric was revealed as a sample for use in outdoor sports such as clothes and tents. Originality/value To meet the needs of multifunctional cotton fabric, the modification of CNTs with dimethyl phosphite and perfluorohexyl iodine has not been reported. The modified fabric has flame-retardant, UV-resistant conductive and conductive properties.


2021 ◽  
pp. 004051752110351
Author(s):  
Zhenlin Jiang ◽  
Youxian Hu ◽  
Keyu Zhu ◽  
Yue Li ◽  
Chaosheng Wang ◽  
...  

There are many defects in the post finishing flame-retardant modification of polyester–cotton (CT) fabric, leading to shortcomings such as single function and low flame-retardant efficiency, which still need to be solved urgently. Herein, a bio-based flame-retardant and antibacterial coating consisting of phytic acid and DL-arginine was deposited on CT fabrics using layer-by-layer assembly to obtain a flame-retardant and antibacterial CT fabric. Fourier transform infrared spectroscopy confirmed that the assembled coating was successful deposited on the CT fabric. The thermogravimetric analysis revealed that the number of bilayers had no significant effect on the degradation temperature of the coated CT fabric; however, it significantly improved the charring effect of the sample, wherein the char rate of the CT fabric coated with 20 bilayers increased from 0.11 to 8.67 wt% compared with uncoated CT fabric at 700°C. In addition, the limiting oxygen index of the CT fabric coated with 20 bilayers increased to 32.0 ± 0.3%. Furthermore, the vertical results revealed that the CT fabric coated with five bilayers attained the UL-94 V-1 grade. The heat release rate (HRR) and the total heat release (THR) of the coated CT fabric were significantly decreased compared to those of the uncoated CT fabric. In particular, the HRR and THR of the CT fabric coated with five bilayers reduced by 28.97% and 30.49%, respectively. Furthermore, the coated CT fabric exhibited an obvious antibacterial effect on Staphylococcus aureus, and the inhibitory ring increased from 0 to 4.0 mm with an increase in bilayers to 20. This study describes a facile method of flame-retardant and antibacterial modification of CT fabric using biological materials.


2012 ◽  
Vol 24 (8) ◽  
pp. 747-755 ◽  
Author(s):  
Bo Liu ◽  
Chunmei Jiang ◽  
Chunling Zhang ◽  
Xuetao Bai ◽  
Jianxin Mu

Organic–inorganic nanocomposites comprising epoxy resins and polyhedral oligomeric silsesquioxanes (POSS) were prepared via in situ polymerization of 3,3′,5,5′-tetramethyl-4,4′-biphenyl diglycidyl epoxy resins and 4,4′-diaminodiphenylsulfone. The thermal, fire-retardant, and morphological properties of the nanocomposites were studied using thermogravimetric analysis (TGA), thermogravimetry-Fourier transform infrared (TG-FTIR) spectroscopy, microscale combustion calorimeter (MCC), limiting oxygen index (LOI), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The peak heat release rate and the total heat release were significantly reduced with the incorporation of POSS into the epoxy networks, based on the MCC results. Moreover, the LOI value slightly increased with the increase in POSS content. Further, SEM and XPS were used to explore the char residues of the pure epoxy resin and POSS-containing system. The introduction of POSS was found to lead to the formation of an inert layer on the surface of the materials, which protects the internal structure from decomposition.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xin’guo Zheng ◽  
Quanxiao Dong ◽  
Xi Wang ◽  
Peiyun Yu ◽  
Weimin Wang ◽  
...  

In this work, silica aerogel was modified by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-1-oxide (DOPO). Then DOPO-immobilized silica aerogel nanoparticles were used as a flame retardant to prepare flame-retardant polyurethane foams. Microscale combustion calorimeter and cone calorimeter tests were employed to evaluate the flame retardancy of polyurethane foams. It was found that both the heat release rate and the total heat release of the composites were reduced with the incorporation of DOPO immobilized silica aerogel. It is speculated that the DOPO-immobilized silica aerogel nanoparticles can inhibit the degradation of polyurethane and catalyze the formation of carbonaceous carbon on the surface.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1286
Author(s):  
Kyung-Who Choi ◽  
Jun-Woo Kim ◽  
Tae-Soon Kwon ◽  
Seok-Won Kang ◽  
Jung-Il Song ◽  
...  

The use of halogen-based materials has been regulated since toxic substances are released during combustion. In this study, polyurethane foam was coated with cationic starch (CS) and montmorillonite (MMT) nano-clay using a spray-assisted layer-by-layer (LbL) assembly to develop an eco-friendly, high-performance flame-retardant coating agent. The thickness of the CS/MMT coating layer was confirmed to have increased uniformly as the layers were stacked. Likewise, a cone calorimetry test confirmed that the heat release rate and total heat release of the coated foam decreased by about 1/2, and a flame test showed improved fire retardancy based on the analysis of combustion speed, flame size, and residues of the LbL-coated foam. More importantly, an additional cone calorimeter test was performed after conducting more than 1000 compressions to assess the durability of the flame-retardant coating layer when applied in real life, confirming the durability of the LbL coating by the lasting flame retardancy.


2021 ◽  
Author(s):  
Kaihao Wang ◽  
Shuheng Wang ◽  
Dan Meng ◽  
Dong Chen ◽  
Chenzhong Mu ◽  
...  

Abstract For the sake of direct using on the built wooden buildings, a green flame resistance coating comprising sodium polysilicate (SPS) and boric acid was prepared. With weight gain of only 10 wt.%, the treated wood sample (SPS/B-wood) performed improved limiting oxygen index value of 40.3% and passed the V-0 rating in UL-94 test. Additionally, the total heat release, total smoke production and peak carbon monoxide production of SPS/B-wood sample were decreased by 24.5%, 36.0% and 59.4% respectively, compared with that of control wood sample. The residue of SPS/B-wood sample was increased to 54.0% from 18.4% of control wood sample at 800oC in the thermogravimetry analysis. The flame retardant mechanism was suggested that SPS and boric acid formed Si-O-B and Si-O-Si contained structures, isolating the heat and smoke transfer during wood combustion. Notably, NaOH, introduced by the SPS/B coating, catalyzed the lignin to form compact and high-quality char. To conclude, this low-cost and easily-operated coating has a promising future utilizing in the villages with dense wood buildings.


Sign in / Sign up

Export Citation Format

Share Document