Flammability testing of wool/cellulosic and wool/synthetic fiber blends: Vertical flame spread and heat release results

2020 ◽  
Vol 38 (6) ◽  
pp. 522-551
Author(s):  
Alexander B Morgan ◽  
Mary L Galaska

Wool is a natural fiber with lower heat release/flammability than some synthetic fabrics, but it has not been well studied for its heat release when other fibers such as cotton, linen, and nylon are present in the woven fabric. In this article, the heat release and vertical flame spread of six commercially available natural color fabrics is reported. This includes 100% wool, 80% wool/20% nylon, 70% wool/30% linen, 45% wool/55% cotton, and 40% wool/38% cotton/12% nylon/10% metallic thread fabric. Heat release was measured through cone calorimetry (ASTM E1354) as a function of the sample mounting method, through microscale combustion calorimetry (ASTM D7309), and flame spread was measured by ASTM D6413. The type of insulated backing used greatly affected the cone calorimeter results, and fabric types did show some effects in vertical flame spread and microscale combustion calorimeter testing.

2021 ◽  
Vol 11 (8) ◽  
pp. 3463
Author(s):  
Dushyant M. Chaudhari ◽  
Stanislav I. Stoliarov ◽  
Mark W. Beach ◽  
Kali A. Suryadevara

Polyisocyanurate (PIR) foam is a robust thermal insulation material utilized widely in the modern construction. In this work, the flammability of one representative example of this material was studied systematically using experiments and modeling. The thermal decomposition of this material was analyzed through thermogravimetric analysis, differential scanning calorimetry, and microscale combustion calorimetry. The thermal transport properties of the pyrolyzing foam were evaluated using Controlled Atmosphere Pyrolysis Apparatus II experiments. Cone calorimetry tests were also carried out on the foam samples to quantify the contribution of the blowing agent (contained within the foam) to its flammability, which was found to be significant. A complete pyrolysis property set was developed and was shown to accurately predict the results of all aforementioned measurements. The foam was also subjected to full-scale flame spread tests, similar to the Single Burning Item test. A previously developed modeling approach based on a coupling between detailed pyrolysis simulations and a spatially-resolved relationship between the total heat release rate and heat feedback from the flame, derived from the experiments on a different material in the same experimental setup, was found to successfully predict the evolution of the heat release rate measured in the full-scale tests on the PIR foam.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1997 ◽  
Author(s):  
Zhi Wang ◽  
Ruichao Wei ◽  
Xuehui Wang ◽  
Junjiang He ◽  
Jian Wang

To fill the shortages in the knowledge of the pyrolysis and combustion properties of new and aged polyvinyl chloride (PVC) sheaths, several experiments were performed by thermogravimetric analysis (TG), Fourier transform infrared (FTIR), microscale combustion calorimetry (MCC), and cone calorimetry. The results show that the onset temperature of pyrolysis for an aged sheath shifts to higher temperatures. The value of the main derivative thermogravimetric analysis (DTG) peak of an aged sheath is greater than that of a new one. The mass of the final remaining residue for an aged sheath is also greater than that of a new one. The gas that is released by an aged sheath is later but faster than that of a new one. The results also show that, when compared with a new sheath, the heat release rate (HRR) is lower for an aged one. The total heat release (THR) of aged sheath is reduced by 16.9–18.5% compared to a new one. In addition, the cone calorimetry experiments illustrate that the ignition occurrence of an aged sheath is later than that of a new one under different incident heat fluxes. This work indicates that an aged sheath generally pyrolyzes and it combusts more weakly and incompletely.


Fibers ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 69
Author(s):  
Eva Magovac ◽  
Bojana Vončina ◽  
Ana Budimir ◽  
Igor Jordanov ◽  
Jaime C. Grunlan ◽  
...  

Environmentally benign layer-by-layer (LbL) deposition was used to obtain flame-retardant and antimicrobial cotton. Cotton was coated with 8, 10, and 12 phytic acid (PA) and chitosan (CH)-urea bilayers (BL) and then immersed into copper (II) sulfate (CuSO4) solution. Our findings were that 12 BL of PA/CH-urea + Cu2+ were able to stop flame on cotton during vertical flammability testing (VFT) with a limiting oxygen index (LOI) value of 26%. Microscale combustion calorimeter (MCC) data showed a reduction of peak heat release rates (pHRR) of more than 61%, while the reduction of total heat release (THR) was more than 54%, relative to untreated cotton. TG-IR analysis of 12 BL-treated cotton showed the release of water, methane, carbon dioxide, carbon monoxide, and aldehydes, while by adding Cu2+ ions, the treated cotton produces a lower amount of methane. Treated cotton also showed no levoglucosan. The intumescent behavior of the treatment was indicated by the bubbled structure of the post-burn char. Antibacterial testing showed a 100% reduction of Klebsiella pneumoniae and Staphylococcus aureus. In this study, cotton was successfully functionalized with a multifunctional ecologically benign flame-retardant and antibacterial nanocoating, by means of LbL deposition.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5492
Author(s):  
Eva Magovac ◽  
Igor Jordanov ◽  
Jaime C. Grunlan ◽  
Sandra Bischof

Chemically bleached cotton fabric was treated with phytic acid (PA), chitosan (CH) and urea by means of layer-by-layer (LbL) deposition to impart flame retardant (FR) behavior using only benign and renewable molecules. Samples were treated with 8, 10, 12 and 15 bilayers (BL) of anionic PA and cationic CH, with urea mixed into the aqueous CH solution. Flammability was evaluated by measuring limiting oxygen index (LOI) and through vertical flame testing. LOI values are comparable to those obtained with commercial flame-retardant finishes, and applying 10 or more bilayers renders cotton self-extinguishing and able to pass the vertical flame test. Microscale combustion calorimeter (MCC) measurements show the average reduction of peak heat release rate (pHRR) of all treated fabrics of ~61% and the reduction of total heat release (THR) of ~74%, in comparison to untreated cotton. Decomposition temperatures peaks (T1max) measured by thermogravimetric analyzer (TG) decreased by approximately 62 °C, while an average residue at 650 °C is ~21% for 10 and more bilayers. Images of post-burn char indicate that PA/CH-urea treatment is intumescent. The ability to deposit such a safe and effective FR treatment, with relatively few layers, makes LbL an alternative to current commercial treatments.


2013 ◽  
Vol 750-752 ◽  
pp. 2057-2062
Author(s):  
Xiao Ying Sun ◽  
Jing Ling Kang ◽  
Jian Zhong Hang ◽  
Lu Jiang Jin ◽  
Fan Xu ◽  
...  

Talc, with different particle sizes, was incorporated to improve flame resistance properties of UV-curable talc/acrylate composite flam-retardant coating at different contents via mechanical blending. Hardness, transmittance, haze, cross-cut adhesion and abrasion resistance results showed that the mechanical and thermal properties of the coatings improved effectively with no comprising on optical properties by adding Talc. The flame retardancy of the UV-curable coatings was investigated by thermogravimetric analysis (TGA) and Microscale Combustion Calorimeter (MCC). The results showed that the incorporation of Talc into the organic network led to an improvement in the thermal stability and flame retardancy of the coating materials. When talc content increased from 0 to 30 wt%, the peak heat release rate (PHRR) decreased from 191.1 W/g to 130.6 W/g, and the total heat release(THR) droped from 17.0 kJ/g to 11.1 kJ/g.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Qiang Xu ◽  
Lin Jiang ◽  
Andrea Majlingova ◽  
Nikoleta Ulbrikova ◽  
Rhoda Afriyie Mensah ◽  
...  

To study the practicability of a micro combustion calorimeter to analyze the calorimetry kinetics of wood, a micro combustion calorimeter with 13 heating rates from 0.1 to 5.5 K/s was used to perform the analysis of 10 kinds of common hardwood and softwood samples. As a microscale combustion measurement method, MCC (microscale combustion calorimetry) can be used to judge the flammability of materials. However, there are two methods for measuring MCC: Method A and Method B. However, there is no uniform standard for the application of combustible MCC methods. In this study, the two MCC standard measurement Methods A and B were employed to check their practicability. With Method A, the maximum specific heat release rate, heat release temperature, and specific heat release of the samples were obtained at different heating rates, while for Method B, the maximum specific combustion rate, combustion temperature and net calorific values of the samples were obtained at different heating rates. The ignition capacity and heat release capacity were then derived and evaluated for all the common hardwood and softwood samples. The results obtained by the two methods have significant differences in the shape of the specific heat release rate curves and the amplitude of the characteristic parameters, which lead to the differences of the derived parameters. A comparison of the specific heat release and the net calorific heat of combustion with the gross caloric values and heating values obtained by bomb calorimetry was also made. The results show that Method B has the potentiality to evaluate the amount of combustion heat release of materials.


2012 ◽  
Vol 24 (8) ◽  
pp. 747-755 ◽  
Author(s):  
Bo Liu ◽  
Chunmei Jiang ◽  
Chunling Zhang ◽  
Xuetao Bai ◽  
Jianxin Mu

Organic–inorganic nanocomposites comprising epoxy resins and polyhedral oligomeric silsesquioxanes (POSS) were prepared via in situ polymerization of 3,3′,5,5′-tetramethyl-4,4′-biphenyl diglycidyl epoxy resins and 4,4′-diaminodiphenylsulfone. The thermal, fire-retardant, and morphological properties of the nanocomposites were studied using thermogravimetric analysis (TGA), thermogravimetry-Fourier transform infrared (TG-FTIR) spectroscopy, microscale combustion calorimeter (MCC), limiting oxygen index (LOI), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The peak heat release rate and the total heat release were significantly reduced with the incorporation of POSS into the epoxy networks, based on the MCC results. Moreover, the LOI value slightly increased with the increase in POSS content. Further, SEM and XPS were used to explore the char residues of the pure epoxy resin and POSS-containing system. The introduction of POSS was found to lead to the formation of an inert layer on the surface of the materials, which protects the internal structure from decomposition.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xin’guo Zheng ◽  
Quanxiao Dong ◽  
Xi Wang ◽  
Peiyun Yu ◽  
Weimin Wang ◽  
...  

In this work, silica aerogel was modified by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-1-oxide (DOPO). Then DOPO-immobilized silica aerogel nanoparticles were used as a flame retardant to prepare flame-retardant polyurethane foams. Microscale combustion calorimeter and cone calorimeter tests were employed to evaluate the flame retardancy of polyurethane foams. It was found that both the heat release rate and the total heat release of the composites were reduced with the incorporation of DOPO immobilized silica aerogel. It is speculated that the DOPO-immobilized silica aerogel nanoparticles can inhibit the degradation of polyurethane and catalyze the formation of carbonaceous carbon on the surface.


Sign in / Sign up

Export Citation Format

Share Document