scholarly journals Geant4 simulation of the Tunka-Grande experiment

2021 ◽  
Vol 2103 (1) ◽  
pp. 012001
Author(s):  
R Monkhoev ◽  
M Ternovoy ◽  
I Astapov ◽  
P Bezyazeekov ◽  
A Borodin ◽  
...  

Abstract The Tunka-Grande array is part of a single experimental complex, which also includes the Tunka-133 and TAIGA-HiScORE (High Sensitivity COsmic Rays and gamma Explorer) wide-angle Cherenkov arrays, TAIGA-IACT array (Imaging Atmospheric Cherenkov Telescope) and TAGA-MUON scintillation array. This complex is located in the Tunka Valley (Buryatia Republic, Russia), 50 km from Lake Baikal. It is designed to study the energy spectrum and the mass composition of charged cosmic rays in the energy range 100 TeV - 1000 PeV, to search for diffuse gamma rays above 100 TeV and to study local sources of gamma rays with energies above 30 TeV. This report outlines 3 key points. The first is the description of the Tunka-Grande scintillation array. The second one presents the computer simulation strategy of the Tunka Grande array based on the Geant4 software. The third one is devoted to the prospects for future research in the field of cosmic ray physics and gamma-ray astronomy using simulation results.

2020 ◽  
Vol 500 (1) ◽  
pp. 1087-1094
Author(s):  
Prabir Banik ◽  
Arunava Bhadra ◽  
Abhijit Bhattacharyya

ABSTRACT The nearest active radio galaxy Centaurus (Cen) A is a gamma-ray emitter in GeV–TeV energy scale. The high energy stereoscopic system (HESS) and non-simultaneous Fermi–Large Area Telescope observation indicate an unusual spectral hardening above few GeV energies in the gamma-ray spectrum of Cen A. Very recently the HESS observatory resolved the kilo parsec (kpc)-scale jets in Centaurus A at TeV energies. On the other hand, the Pierre Auger Observatory (PAO) detects a few ultrahigh energy cosmic ray (UHECR) events from Cen-A. The proton blazar inspired model, which considers acceleration of both electrons and hadronic cosmic rays in active galactic nuclei (AGN) jet, can explain the observed coincident high-energy neutrinos and gamma-rays from Ice-cube detected AGN jets. Here, we have employed the proton blazar inspired model to explain the observed GeV–TeV gamma-ray spectrum features including the spectrum hardening at GeV energies along with the PAO observation on cosmic rays from Cen-A. Our findings suggest that the model can explain consistently the observed electromagnetic spectrum in combination with the appropriate number of UHECRs from Cen A.


2018 ◽  
Vol 191 ◽  
pp. 01007 ◽  
Author(s):  
N. Budnev ◽  
I. Astapov ◽  
P. Bezyazeekov ◽  
V. Boreyko ◽  
A. Borodin ◽  
...  

The physics motivations and advantages of the new TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) detector are presented. TAIGA aims at gamma-ray astronomy at energies from a few TeV to several PeV, as well as cosmic ray physics from 100 TeV to several EeV. For the energy range 30 – 200 TeV the sensitivity of 10 km2 area TAIGA array for the detection of local sources is expected to be 5 × 10-14 erg cm-2 sec-1 for 300 h of observations. Reconstruction of the given EAS energy, incoming direction and its core position, based on the timing TAIGA-HiSCORE data, allows one to increase a distance between the IACTs up to 600-1000 m. The low investments together with the high sensitivity for energies ≥ 30-50 TeV make this pioneering technique very attractive for exploring the galactic PeVatrons and cosmic rays. At present the TAIGA first stage has been constructed in Tunka valley, 50 km West from the Lake Baikal. The first experimental results of the TAIGA first stage are presented.


2009 ◽  
Vol 18 (10) ◽  
pp. 1627-1631 ◽  
Author(s):  
◽  
WILFRIED DOMAINKO ◽  
DALIBOR NEDBAL ◽  
JAMES A. HINTON ◽  
OLIVIER MARTINEAU-HUYNH

Clusters of galaxies are believed to contain a significant population of cosmic rays. From the radio and probably hard X-ray bands it is known that clusters are the spatially most extended emitters of non-thermal radiation in the Universe. Due to their content of cosmic rays, galaxy clusters are also potential sources of VHE (> 100 GeV) gamma rays. Recently, the massive, nearby cluster Abell 85 has been observed with the H.E.S.S. experiment in VHE gamma rays with a very deep exposure as part of an ongoing campaign. No significant gamma-ray signal has been found at the position of the cluster. The non-detection of this object with H.E.S.S. constrains the total energy of cosmic rays in this system. For a hard spectral index of the cosmic rays of -2.1 and if the cosmic-ray energy density follows the large scale gas density profile, the limit on the fraction of energy in these non-thermal particles with respect to the total thermal energy of the intra-cluster medium is 8% for this particular cluster. This value is at the lower bounds of model predictions.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Prabir Banik ◽  
Arunava Bhadra

AbstractRecently the MAGIC telescope observed three TeV gamma-ray extended sources in the galactic plane in the neighborhood of radio SNR G24.7+0.6. Among them, the PWN HESS J1837-069 was detected earlier by the HESS observatory during its first galactic plane survey. The other two sources, MAGIC J1835-069 and MAGIC J1837-073 are detected for the first time at such high energies. Here we shall show that the observed gamma-rays from the SNR G24.7+0.6 and the HESS J1837-069 can be explained in terms of hadronic interactions of the PWN/SNR accelerated cosmic rays with the ambient matter. We shall further demonstrate that the observed gamma-rays from the MAGIC J1837-073 can be interpreted through hadronic interactions of runaway cosmic-rays from PWN HESS J1837-069 with the molecular cloud at the location of MAGIC J1837-073. No such association has been found between MAGIC J1835-069 and SNR G24.7+0.6 or PWN HESS J1837-069. We have examined the maximum energy attainable by cosmic-ray particles in the SNR G24.7+0.6/ PWN HESS J1837-069 and the possibility of their detection with future gamma-ray telescopes. The study of TeV neutrino emissions from the stated sources suggests that the HESS J1837-069 should be detected by IceCube Gen-2 neutrino telescope in a few years of observation.


2013 ◽  
Vol 28 (02) ◽  
pp. 1340001 ◽  
Author(s):  
ALEXANDER KUSENKO

Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed flux of ultrahigh-energy cosmic-rays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.


2008 ◽  
Vol 17 (09) ◽  
pp. 1319-1332
Author(s):  
PETER MÉSZÁROS

Gamma-ray bursts are capable of accelerating cosmic rays up to GZK energies Ep ~ 1020 eV, which can lead to a flux at Earth comparable to that observed by large EAS arrays such as Auger. The semi-relativistic outflows inferred in GRB-related hypernovae are also likely sources of somewhat lower energy cosmic rays. Leptonic processes, such as synchrotron and inverse Compton, as well as hadronic processes, can lead to GeV-TeV gamma-rays measurable by GLAST, AGILE, or ACTs, providing useful probes of the burst physics and model parameters. Photo-meson interactions also produce neutrinos at energies ranging from sub-TeV to EeV, which will be probed with forthcoming experiments such as IceCube, ANITA and KM3NeT. This would provide information about the fundamental interaction physics, the acceleration mechanism, the nature of the sources and their environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jihwan Boo ◽  
Mark D. Hammig ◽  
Manhee Jeong

AbstractDual particle imaging, in which both neutrons and gamma-rays in the environment can be individually characterized, is particularly attractive for monitoring mixed radiation emitters such as special nuclear materials (SNM). Effective SNM localization and detection benefits from high instrument sensitivity so that real-time imaging or imaging with a limited number of acquired events is enabled. For portable applications, one also desires a dual particle imager (DPI) that is readily deployable. We have developed a hand-held type DPI equipped with a pixelated stilbene-silicon photomultiplier (SiPM) array module and low sampling-rate analog-to-digital converters (ADCs) processed via a multiplexed readout. The stilbene-SiPM array (12 × 12 pixels) is capable of effectively performing pulse shape discrimination (PSD) between gamma-ray and neutron events and neutron/gamma-ray source localization on the imaging plane, as demonstrated with 252Cf neutron/gamma and 137Cs gamma-ray sources. The low sampling rate ADCs connected to the stilbene-SiPM array module result in a compact instrument with high sensitivity that provides a gamma-ray image of a 137Cs source, producing 6.4 μR/h at 1 m, in less than 69 s. A neutron image for a 3.5 × 105 n/s 252Cf source can also be obtained in less than 6 min at 1 m from the center of the system. The instrument images successfully with field of view of 50° and provides angular resolution of 6.8°.


Author(s):  
Arnon Dar

Changes in the solar neighbourhood due to the motion of the sun in the Galaxy, solar evolution, and Galactic stellar evolution influence the terrestrial environment and expose life on the Earth to cosmic hazards. Such cosmic hazards include impact of near-Earth objects (NEOs), global climatic changes due to variations in solar activity and exposure of the Earth to very large fluxes of radiations and cosmic rays from Galactic supernova (SN) explosions and gamma-ray bursts (GRBs). Such cosmic hazards are of low probability, but their influence on the terrestrial environment and their catastrophic consequences, as evident from geological records, justify their detailed study, and the development of rational strategies, which may minimize their threat to life and to the survival of the human race on this planet. In this chapter I shall concentrate on threats to life from increased levels of radiation and cosmic ray (CR) flux that reach the atmosphere as a result of (1) changes in solar luminosity, (2) changes in the solar environment owing to the motion of the sun around the Galactic centre and in particular, owing to its passage through the spiral arms of the Galaxy, (3) the oscillatory displacement of the solar system perpendicular to the Galactic plane, (4) solar activity, (5) Galactic SN explosions, (6) GRBs, and (7) cosmic ray bursts (CRBs). The credibility of various cosmic threats will be tested by examining whether such events could have caused some of the major mass extinctions that took place on planet Earth and were documented relatively well in the geological records of the past 500 million years (Myr). A credible claim of a global threat to life from a change in global irradiation must first demonstrate that the anticipated change is larger than the periodical changes in irradiation caused by the motions of the Earth, to which terrestrial life has adjusted itself. Most of the energy of the sun is radiated in the visible range. The atmosphere is highly transparent to this visible light but is very opaque to almost all other bands of the electromagnetic spectrum except radio waves, whose production by the sun is rather small.


1990 ◽  
Vol 123 ◽  
pp. 537-541
Author(s):  
Carl E. Fichtel ◽  
Mehmet E. Ozel ◽  
Robert G. Stone

AbstractPresent and future measurement of the Large Magellanic Cloud (LMC) particularly in the radio and high energy gamma ray range offer the possibility of understanding the density and distribution of the cosmic rays in a galaxy other than our own and the role that they play in galactic dynamic balance. After a study of the consistency of the measurements and interpretation of the synchrotron radiation from our own galaxy, the cosmic ray distribution for the LMC is calculated under the assumption that the cosmic ray nucleon to electron ratio is the same and the relation to the magnetic fields are the same, although the implications of alternatives are discussed. It is seen that the cosmic ray density level appears to be similar to that in our own galaxy, but varying in position in a manner generally consistent with the concept of correlation with the matter on a broad scale.


2020 ◽  
Vol 492 (3) ◽  
pp. 4246-4253 ◽  
Author(s):  
Yan Huang ◽  
Zhuo Li ◽  
Wei Wang ◽  
Xiaohong Zhao

ABSTRACT The synchrotron radiation from secondary electrons and positrons (SEPs) generated by hadronic interactions in the shock of supernova remnant (SNR) could be a distinct evidence of cosmic ray (CR) production in SNR shocks. Here, we provide a method where the observed gamma-ray flux from SNRs, created by pion decays, is directly used to derive the SEP distribution and hence the synchrotron spectrum. We apply the method to three gamma-ray bright SNRs. In the young SNR RX J1713.7−3946, if the observed GeV−TeV gamma-rays are of hadronic origin and the magnetic field in the SNR shock is B ≳ 0.5 mG, the SEPs may produce a spectral bump at 10−5–10−2 eV, exceeding the predicted synchrotron component of the leptonic model, and a soft spectral tail at ≳100 keV, distinct from the hard spectral slope in the leptonic model. In the middle-aged SNRs IC443 and W44, if the observed gamma-rays are of hadronic origin, the SEP synchrotron radiation with B ∼ 400–500 μG can well account for the observed radio flux and spectral slopes, supporting the hadronic origin of gamma-rays. Future microwave to far-infrared and hard X-ray (>100keV) observations are encouraged to constraining the SEP radiation and the gamma-ray origin in SNRs.


Sign in / Sign up

Export Citation Format

Share Document