scholarly journals Podocalyxin promotes an impermeable epithelium and inhibits pro-implantation factors to negatively regulate endometrial receptivity

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sophea Heng ◽  
Nirukshi Samarajeewa ◽  
Yao Wang ◽  
Sarah G. Paule ◽  
James Breen ◽  
...  

AbstractEmbryo implantation is a key step in establishing pregnancy and a major limiting factor in IVF. Implantation requires a receptive endometrium but the mechanisms governing receptivity are not well understood. We have recently discovered that podocalyxin (PCX or PODXL) is a key negative regulator of human endometrial receptivity. PCX is expressed in all endometrial epithelial cells in the non-receptive endometrium but selectively down-regulated in the luminal epithelium at receptivity. We have further demonstrated that this down-regulation is essential for implantation because PCX inhibits embryo attachment and penetration. However, how PCX confers this role is unknown. In this study, through RNAseq analysis of Ishikawa cell line stably overexpressing PCX, we discovered that PCX suppresses expression of genes controlling cell adhesion and communication, but increases those governing epithelial barrier functions, especially the adherens and tight junctions. Moreover, PCX suppresses multiple factors such as LIF and signaling pathways including Wnt and calcium signaling that support receptivity but stimulates anti-implantation genes such as LEFTY2. Functional studies confirmed that PCX promotes epithelial barrier functions by increasing key epithelial junction proteins such as E-cadherin and claudin 4. PCX thus promotes an anti-adhesive and impermeable epithelium while impedes pro-implantation factors to negatively control endometrial receptivity for implantation.

2020 ◽  
Vol 65 (2) ◽  
pp. 35-44
Author(s):  
Kai Huang ◽  
Gezi Chen ◽  
Wenqian Fan ◽  
Linli Hu

A receptive endometrium is required in a successful embryo implantation. The ubiquitination-induced β-catenin degradation is related to the implantation failure.This study aimed to elucidate whether miR-23a-3p regulates endometrial receptivity via the modulation of β-catenin ubiquitination.The expressions of miR-23a-3p and CUL3 were detected in endometrial epithelial cells (EECs) isolated from pregnant mice and in hormone-induced EEC-like Ishikawa cells. The ubiquitination experiment was performed to explore the effect of CUL3 and miR-23a-3p on β-catenin ubiquitination level. The trophoblast attachment was detected by co-culturing JAR (choriocarcinoma cell line) spheroids with Ishikawa cell monolayers. miR-23a-3p was upregulated while CUL3 was downregulated in EECs at day 4 after pregnancy compared with day 1, as well as in hormone-induced Ishikawa cells. miR-23a-3p positively regulated the protein level of β-catenin without affecting the mRNA level. The ubiquitination and degradation of β-catenin was suppressed by miR-23a-3p, while it was promoted by CUL3. Immunoprecipitation confirmed the binding between CUL3 and β-catenin. Luciferase reporter assay confirmed the target relationship between miR-23a-3p and CUL3. The ubiquitination of β-catenin was modulated by the miR-23a-3p/CUL3 pathway. The overexpression of miR-23a-3p promoted JAR spheroid attachments in Ishikawa cells. miR-23a-3p is beneficial for the endometrial receptivity and embryo implantation, whose mechanism is partly through the modulation of CUL3/β-catenin.


2012 ◽  
Vol 24 (3) ◽  
pp. 517 ◽  
Author(s):  
U. Doyle ◽  
N. Sampson ◽  
C. Zenzmaier ◽  
P. Schwärzler ◽  
P. Berger

In preparation for embryo implantation, endometrial stromal cells (ESC) undergo differentiation, termed decidualisation. Enhancing endometrial decidualisation may overcome reduced endometrial receptivity, a major limiting factor in natural and assisted reproduction. To determine whether seminal plasma (SP) influences decidualisation, primary human ESC were treated with progesterone (P4, 50 ng mL–1) in the presence or absence of dialysed SP (0.5%) for 24 h or for up to 27 days to investigate immediate early effects or the effects of prolonged exposure, respectively. Combined SP and P4 treatment induced ESC morphological differentiation. Relative to control, P4 alone, and SP alone combined treatment with SP and P4 for 27 days significantly upregulated mRNA levels of the decidua-specific markers prolactin (PRL) and insulin-like growth factor binding protein 1 (IGFBP1). Consistently, PRL protein secretion was significantly increased over the course of 27 days combined SP and P4 treatment relative to control, P4 alone and SP alone. Likewise, IGFBP1 secretion was significantly greater relative to control and P4 alone over the course of 27 days. Thus, SP enhances and accelerates P4-mediated decidualisation of human ESC and may enhance endometrial receptivity.


2011 ◽  
Vol 23 (1) ◽  
pp. 192
Author(s):  
K.-C. Choi ◽  
H. Yang ◽  
E.-B. Jeung

The human endometrium resists embryo implantation except during the window of receptivity. A change in endometrial gene expression is required for the development of receptivity. Uterine calbindin-D28k (CaBP-28k) has been shown to be involved in the regulation of endometrial receptivity by intracellular Ca2+. Nowadays, this protein has been mainly linked to the brain, kidneys, and pancreas, but potential role(s) of CaBP-28k remain to be clarified in the uterus of humans during the menstrual cycle. Thus, we demonstrated in this study that the expression of CaBP-28k in the human endometrium in more divided in the menstrual phases. During the menstrual cycle of humans, uterine expression levels of CaBP-28k mRNA and protein increased at the proliferative phase and fluctuated in these tissues, compared with other phases. We assessed the effects of the sex-steroid hormones E2 and P4 on the expression of CaBP-28k in the Ishikawa cell line. A significant increase in the expression of CaBP-9k mRNA was observed at the concentration of 17β-oestradiol (E2; 10–9 to 10–7 M). In addition, spatial expression of CaBP-28k was detected by immunohistochemistry. CaBP-28k is abundantly localised in the cytoplasm of the luminal and glandular epithelial cells during the menstrual cycle. Taken together, these results indicate that CaBP-28k, a uterine calcium-binding protein, is abundantly expressed in the human uterus, suggesting that uterine expression of CaBP-28k may be involved in reproductive functions during the menstrual cycle of humans.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sophie Kinnear ◽  
Lois A. Salamonsen ◽  
Mathias Francois ◽  
Vincent Harley ◽  
Jemma Evans

Abstract The yin and yang of female fertility is a complicated issue; large numbers of women/couples desire fertility and seek assisted reproduction intervention to achieve conception, while others seek to prevent pregnancy. Understanding specific molecules which control endometrial-embryo interactions is essential for both facilitating and preventing pregnancy. SOX17 has recently emerged as an important transcription factor involved in endometrial receptivity and embryo implantation. However, studies to date have examined mouse models of pregnancy which do not necessarily translate to the human. Demonstration of a role for ‘implantation factors’ in a human system is critical to provide a rationale for in depth clinical investigation and targeting of such factors. We demonstrate that SOX17is present within the receptive human endometrium and is up-regulated within human endometrial epithelial cells by combined estrogen & progesterone, the hormonal milieu during the receptive window. SOX17 localizes to the point of adhesive contact between human endometrial epithelial cells and a human ‘embryo mimic’ model (trophectodermal spheroid). Targeting SOX17 in endometrial epithelial cells using CRISPR/Cas9 knockdown or a SOX-F family inhibitor, MCC177, significantly inhibited adhesion of an trophectodermal spheroids to the epithelial cells thereby preventing ‘implantation’. These data confirm the important role of endometrial SOX17 in human endometrial receptivity and embryo implantation.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Marina Segura-Benítez ◽  
María Cristina Carbajo-García ◽  
Ana Corachán ◽  
Amparo Faus ◽  
Antonio Pellicer ◽  
...  

Abstract Background Successful implantation is dependent on coordination between maternal endometrium and embryo, and the role of EVs in the required cross-talk cell-to-cell has been recently established. In this regard, it has been reported that EVs secreted by the maternal endometrium can be internalized by human trophoblastic cells transferring their contents and enhancing their adhesive and invasive capacity. This is the first study to comprehensively evaluate three EV isolation methods on human endometrial epithelial cells in culture and to describe the proteomic content of EVs secreted by pHEECs from fertile women. Methods Ishikawa cells and pHEECs were in vitro cultured and hormonally treated; subsequently, conditioned medium was collected and EVs isolated. Ishikawa cells were used for the comparison of EVs isolation methods ultracentrifugation, ExoQuick-TC and Norgen Cell Culture Media Exosome Purification Kit (n = 3 replicates/isolation method). pHEECs were isolated from endometrial biopsies (n = 8/replicate; 3 replicates) collected from healthy oocyte donors with confirmed fertility, and protein content of EVs isolated by the most efficient methodology was analysed using liquid chromatography–tandem mass spectrometry. EV concentration and size were analyzed by nanoparticle tracking analysis, EV morphology visualized by transmission electron microscopy and protein marker expression was determined by Western blotting. Results Ultracentrifugation was the most efficient methodology for EV isolation from medium of endometrial epithelial cells. EVs secreted by pHEECs and isolated by ultracentrifugation were heterogeneous in size and expressed EV protein markers HSP70, TSG101, CD9, and CD81. Proteomic analysis identified 218 proteins contained in these EVs enriched in biological processes involved in embryo implantation, including cell adhesion, differentiation, communication, migration, extracellular matrix organization, vasculature development, and reproductive processes. From these proteins, 82 were selected based on their functional relevance in implantation success as possible implantation biomarkers. Conclusions EV protein cargos are implicated in biological processes related to endometrial receptivity, embryo implantation, and early embryo development, supporting the concept of a communication system between the embryo and the maternal endometrium via EVs. Identified proteins may define new biomarkers of endometrial receptivity and implantation success.


Author(s):  
Xi Cheng ◽  
Yu Zhang ◽  
Jinzhao Ma ◽  
Shuxian Wang ◽  
Rujun Ma ◽  
...  

Abstract Endometrial receptivity is crucial for successful embryo implantation It is regulated by multiple factors which include ovarian steroid hormones and the immune microenvironment among others. Nod Like Receptor Pyrins-3 (NLRP3) is a key intracellular pattern-recognition receptor and a critical component of the inflammasome, which plays an essential role in the development of inflammation and of immune responses. However, the physiological functions of NLRP3 in the endometrium remain largely unclear. This study investigated the physiological and pathological significance of NLRP3 in human endometrial epithelial cell during the implantation window. NLRP3 is highly expressed during the mid-proliferative and mid-secretory phases of the human endometrium and transcriptionally up-regulated by estradiol (E2) through estrogen receptor β (ERβ). In addition, NLRP3 promotes embryo implantation and enhances epithelial-mesenchymal transition (EMT) of Ishikawa (IK) cells via both inflammasome-dependent and inflammasome-independent pathways, which might provide a novel insight into endometrial receptivity and embryo implantation. Our findings suggest that NLRP3, which is transcriptionally regulated by E2, induces epithelial-mesenchymal transition of endometrial epithelial cells and promotes embryo adhesion.


2021 ◽  
Vol 11 (6) ◽  
pp. 477
Author(s):  
Shiyuan Li ◽  
Lijun Ding

Ovarian steroid-regulated cyclical regeneration of the endometrium is crucial for endometrial receptivity and embryo implantation, and it is dependent on the dynamic remodeling of the endometrial vasculature. Perivascular cells, including pericytes surrounding capillaries and microvessels and adventitial cells located in the outermost layer of large vessels, show properties of mesenchymal stem cells, and they are thus promising candidates for uterine regeneration. In this review, we discuss the structure and functions of the endometrial blood vasculature and their roles in endometrial regeneration, the main biomarkers and characteristics of perivascular cells in the endometrium, and stem cell-based angiogenetic therapy for Asherman’s syndrome.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Li Li ◽  
Huabo Jiang ◽  
Xuecong Wei ◽  
Dandan Geng ◽  
Ming He ◽  
...  

Vascular endothelial growth factor receptor-2 (VEGFR-2) regulates the mitogen-activated protein kinase (MAPK) signaling pathway and plays an important role in angiogenesis. Bu Shen Zhu Yun decoction (BSZYD) can improve endometrial receptivity and embryo implantation rates in patients undergoing in vitro fertilization. However, whether BSZYD improves endometrial receptivity via angiogenesis remains unclear. Here, we investigated the effects of BSZYD on the proliferation, migration, and angiogenesis of human endometrial microvascular endothelial cells (HEMECs) and found that BSZYD upregulated the expression of cyclin D1, matrix metalloproteinase 9 (MMP9), and proliferating cell nuclear antigen (PCNA) in HEMECs. Cell Counting Kit 8 assay, scratch-wound assay, and Tube Formation Assay results showed that BSZYD promoted the proliferation, migration, and angiogenesis of HEMECs. Western blot analysis results revealed the activation of the MAPK signaling pathway by BSZYD through the upregulation of VEGF and VEGFR-2 expression. Together, these findings highlight the novel mechanism underlying BSZYD-mediated improvement in endometrial receptivity through the MAPK signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document