scholarly journals Isothermal and Kinetic Investigation of Exploring the Potential of Citric Acid-Treated Trapa natans and Citrullus lanatus Peels for Biosorptive Removal of Brilliant Green Dye from Water

2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Muhammad Sadiq Hussain ◽  
Rabia Rehman ◽  
Muhammad Imran

Trapa natans peels (TNPs) and Citrullus lanatus peels (CLPs) were utilized for the biosorptive removal of brilliant green dye (BGD), after modifying with citric acid. Characterization and surface morphology were studied by Fourier transform infrared spectroscopy and scanning electron microscopy. For the removal of BGD by citric acid-treated Trapa natans peels (CA-TNPs), the optimum conditions were obtained with adsorbent dose 0.8 g, contact time 25 minutes, initial pH 5, temperature 30°C, and agitation speed 100 rpm, while for the citric acid-treated Citrullus lanatus peels (CA-CLPs), adsorbent dose 0.8 g, contact time 20 minutes, pH 5, temperature 30°C, and agitation speed 100 rpm gave optimum results. The qmax values obtained were 108.6, 128, 144.9, and 188.68 mg/g for R-TNP, CA-TNP, R-CLP, and CA-CLP, respectively, while the correlation coefficient (R2) values obtained were 0.985, 0.986, 0.985, and 0.998 for R-TNP, CA-TNP, R-CLP, and CA-CLP, respectively. These favor the Langmuir isotherm and pseudo-second-order kinetics, with negative (ΔG0) values of all adsorbents, determining that the adsorption phenomenon is exothermic and spontaneous in nature. Both citric acid-treated peels of Trapa natans and Citrullus lanatus were found suitable for bulk-scale eradication of hazardous, toxic, and carcinogenic basic cationic dyes.

2021 ◽  
Vol 15 (4) ◽  
pp. 567-574
Author(s):  
Huda A. Jaber ◽  
◽  
Marwa F. Abdul Jabbar ◽  

The current study deals with the removal of cationic dye (brilliant green) and anionic dye (methyl orange) from wastewater by using sunflower husk as an adsorbent. The operation takes place batch wise by applying several concentrations of the dye solution with various adsorbent amounts, at a range of initial PH values and particle sizes at varying contact time intervals. The percent of dye removed for two dyes increased with increasing time and adsorbent dose and decreased with increasing the dye concentration and particle size. The equilibrium time differed according to conditions used. The optimum removal for brilliant green dye was 98 %, which was achieved at 50 ppm dye concentration, 2 g\l adsorbent dose, 75 µm particles size and pH 7 at contact time of 1 h, compared with low removal for methyl orange that reached 54 % under optimum conditions (dye concentration 10 ppm, adsorbent dose 4 g/l, pH 3 at the same particles size and time). Kinetic studies were conducted and revealed that the adsorption was well defined by pseudo-second order model and could be described by the Langmuir isotherm.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Rabia Rehman ◽  
Sara Jan Muhammad ◽  
Muhammad Arshad

The purpose of this study was to use low cost and easily accessible biosorbent for batch-scale elimination of brilliant green and acid orange 74 dyes from aqueous solution. Pinus roxburghii leaves were utilized to study their dye-eliminating capacities. The adsorbent was characterized by FTIR, TGA, DTA, and SEM. The optimized conditions for brilliant green and acid orange 74 dye elimination were adsorbent dose, 1.2 and 1.8 g; contact time, 30 and 45 min; pH, 2 and 1; temperature, 50°C and 60°C; and agitation speed, 125 rpm and 50 rpm for BG and AO-74, respectively. Adsorption records well fitted Langmuir isotherm. Possibility of the procedure was shown by negative values of the thermodynamic parameter ∆G° for both dyes. Kinetic studies showed that adsorption of BG and AO-74 dyes from watery solution by PR leaves followed pseudo-second-order kinetics.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Rajeshkannan Rajan ◽  
Manivasagan Rajasimman ◽  
Rajamohan Natarajan

In this study, the use of wheat bran as a possible adsorbent has been successfully demonstrated in the removal of Acid blue9 (AB9) from aqueous solution. The effect of different parameters such as temperature, adsorbent dose, contact time, adsorbent size and agitation speed were investigated. The optimum conditions obtained from response surface methodology are: temperature-38.1°C, adsorbent dose (3.1g/L), contact time (206 min), adsorbent size 0.1mm (150mesh), and agitation speed (222rpm). The effect of pH and initial substrate concentration were studied. The pseudo-first order and pseudo-second order kinetics were tested. The sorption equilibrium, expressed by the Langmuir and Freundlich equations, indicated that the process was in compliance with Freundlich isotherm.


Author(s):  
Amarnath P.C & Shashikala K. J. Praveen Kumar D. G., Kalleshappa C.M.,

In the present study we explored the adsorptive characteristics of 4-nitroaniline from synthetic aqueous solution onto bagasse fly ash (BFA). Batch experiments were carried out to determine the influence of parameters like initial pH (pH0), adsorbent dose (m), contact time (t) and initial concentration (C0) on the removal of 4-nitroaniline. The maximum removal of 4-nitroaniline was determined to be 98% at lower concentrations (50 mg/L) and 41% at higher concentrations (300 mg/L), using a BFA dosage of 10 g/L at 303K. Kinetic study of 4-nitroaniline removal by BFA was well represented by pseudo second-order kinetic model. The 4-nitroaniline desorption from 4-nitroaniline loaded BFA shows that only 27% and 36% of 4-nitroaniline could be recovered using ethyl alcohol and acetone respectively.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550009 ◽  
Author(s):  
N. M. Mubarak ◽  
Y. T. Fo ◽  
Hikmat Said Al-Salim ◽  
J. N. Sahu ◽  
E. C. Abdullah ◽  
...  

The study on the removal of methylene blue (MB) and orange-G dyes using magnetic biochar derived from the empty fruit bunch (EFB) was carried out. Process parameters such as pH, adsorbent dosage, agitation speed and contact time were optimized using Design-Expert Software v.6.0.8. The statistical analysis reveals that the optimum conditions for the maximum adsorption of MB are at pH 2 and pH 10, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. While for orange-G, at pH 2, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. The maximum adsorption capacity of 31.25 mg/g and 32.36 mg/g for MB and orange-G respectively. The adsorption kinetic for both dyes obeyed pseudo-second order.


2012 ◽  
Vol 18 (4-1) ◽  
pp. 509-523 ◽  
Author(s):  
Mina Gholipour ◽  
Hassan Hashemipour

In this study, the removal of hexavalent chromium from aqueous solutions using multi-walled carbon nanotubes (MWCNTs) has been investigated as a function of adsorbent dosage, initial Cr(VI) concentration, initial pH, contact time and temperature. Low pH, low initial concentrations of Cr(VI), increasing contact time and high temperature were found as optimal conditions. A comparison of kinetics models applied to the adsorption of Cr(VI) ions on the MWCNTs was evaluated for the pseudo first-order, the pseudo second-order, and Elovich kinetics models, respectively. Pseudo second-order kinetics model was found to correlate the experimental data well. Equilibrium isotherms were measured experimentally and results show that data were fitted well by the BET model. Thermodynamic parameters were estimated and results suggest that the adsorption process is spontaneous, physical and endothermic. The reversibility of Cr(VI) adsorption onto MWCNTs by desorption process and the effect of operating factors such as regeneration solution characteristics, contact time and temperature on this process was investigated. Results show that MWCNTs are effective Cr(VI) adsorbents and can be reused through many cycles of regeneration without any high decreasing in their performance.


2021 ◽  
Author(s):  
Samina Zaman ◽  
Md. Nayeem Mehrab ◽  
Md. Shahnul Islam ◽  
Gopal Chandra Ghosh ◽  
Tapos Kumar Chakraborty

Abstract This study investigates the potential applicability of hen feather (HF) to remove methyl red (MR) dye from aqueous solution with the variation of experimental conditions: contact time (1–180 min), pH (4–8), initial dye concentration (5–50 mg/L) and adsorbent dose (3–25 g/L). Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) evaluate the surface morphology and chemistry of HF, respectively. The maximum removal of MR by HF was 92% when the optimum conditions were initial MR dye concentration 05 mg/L, pH 4.0, adsorbent dose 07.0 g/L and 90.0 min equilibrium contact time. Langmuir isotherm (R2 = 0.98) was more suited than Freundlich isotherm (R2 = 0.96) for experimental data, and the highest monolayer adsorption capacity was 6.02 mg/g. The kinetics adsorption data fitted well to pseudo-second-order model (R2 = 0.999) and more than one process were involved during the adsorption mechanism but film diffusion was the potential rate-controlling step. The findings of the study show that HF is a very effective and low-cost adsorbent for removing MR dye from aqueous solutions.


2021 ◽  
Vol 16 (2) ◽  
pp. 436-451
Author(s):  
Meghdad Sheikhi ◽  
Hassan Rezaei

Abstract Treatment of the industrial wastewater before discharging into aquatic ecosystems using a new technology such as nanotechnology seems necessary. There are different methods for the removal of the heavy metals in the wastewater. In this study, nano-chitin was purchased from the Nano-Novin Polymer Company and used as an adsorbent for the removal of chromium (VI) ions from aqueous solution in a batch system. The effects of pH, temperature, contact time, concentration, and adsorbent dose were investigated. According to the results, the optimum conditions of adsorption occurred at pH = 6, temperature = 25 °C, 60 minutes contact time, and 0.6 g·L−1 adsorbent dose. Investigation of equilibrium isotherms showed that the isotherm fitted the Freundlich model with a correlation coefficient of R2 = 0.9689. The pseudo second-order model with the larger correlation coefficient had a greater fitness against experimental data in the kinetic studies. Thermodynamic parameters such as Gibbs free energy, enthalpy, and entropy were calculated, which indicated spontaneous, endothermic, and random processes, respectively. Given the good results of this project, nano-chitin can be suggested as a novel adsorbent which is highly capable of adsorbing hexavalent chromium from aqueous solutions.


2020 ◽  
Vol 15 ◽  
pp. 155892502091984
Author(s):  
Moussa Abbas ◽  
Zahia Harrache ◽  
Mohamed Trari

This study investigates the potential use of activated carbon, prepared from pomegranate peels, as an adsorbent activated using H3PO4 and its ability to remove crystal violet from an aqueous solution. The adsorbent was characterized by the Brunauer–Emmett–Teller method (specific surface area: 51.0674 m2 g−1) and point of zero charge (pHPZC = 5.2). However, some examined factors were found to have significant impacts on the adsorption capacity of activated carbon derived from pomegranate peels such as the initial dye concentration (5–15 mg L−1), solution pH (2–14), adsorbent dose (1–8 g L−1), agitation speed (100–700 r/min), and temperature (298–338 K). The best adsorption capacity was found at pH 11 with an adsorbent dose of 1 g L−1, an agitation speed at 400 r/min, and a contact time of 45 min. The adsorption mechanism of crystal violet onto activated carbon derived from pomegranate peels was studied using the pseudo-first-order, pseudo-second-order, Elovich, and Webber–Morris diffusion models. The adsorption kinetics were found to rather follow a pseudo-second order kinetic model with a determination coefficient ( R2) of 0.999. The equilibrium adsorption data for crystal violet adsorbed onto activated carbon derived from pomegranate peels were analyzed by the Langmuir, Freundlich, Elovich, and Temkin models. The results indicate that the Langmuir model provides the best correlation with qmax capacities of 23.26 and 76.92 mg g−1 at 27°C and 32°C, respectively. The adsorption isotherms at different temperatures have been used for the determination of thermodynamic parameters like the free energy, enthalpy, and entropy to predict the nature of adsorption process. The negative values Δ G0 (−5.221 to −1.571 kJ mol−1) and Δ H0 (−86.141 kJ mol−1) indicate that the overall adsorption is spontaneous and exothermic with a physisorption process. The adsorbent derived from pomegranate peels was found to be very effective and suitable for the removal of reactive dyes from aqueous solutions, due to its availability, low-cost preparation, and good adsorption capacity.


2014 ◽  
Vol 692 ◽  
pp. 149-155 ◽  
Author(s):  
Jun Ren ◽  
Dan Xu ◽  
Ling Tao ◽  
Zhao Wen Fu

The adsorption behavior of Zn (II) by attapulgite were studied in the paper, The effects of adsorbent dose. Contact time, ionic strength and temperature on the adsorption were investigated. The maximum adsorption capacity is 4.129 mg.g-1 at 333 K. The kinetic study indicated that the adsorption was a pseudo-second-order process. The adsorption was well fitted by the Langmuir adsorption isotherm model. The results indicated that the sorption of Zn (II) by attapulgite was a spontaneous process, and the sorption was endothermic.


Sign in / Sign up

Export Citation Format

Share Document