scholarly journals Effect of chamfer width and chamfer angle on tool wear in slot milling

Author(s):  
Kourosh Tatar ◽  
Inge Svenningsson

AbstractThe tool geometry is generally of great significance in metal cutting performance. The response surface method was used to optimize chamfer geometry to achieve reliable and minimum tool wear in slot milling. Models were developed for edge chipping, rake wear, and flank wear. The adequacy of the models was verified using analysis of variance at a 95% confidence level. Each response was optimized individually, and the multiple responses were optimized simultaneously using the desirability function approach. The Monte Carlo simulation method was applied to tolerance analysis. All milling tests were conducted at dry conditions; the chamfer width and the chamfer angle varied between 0.1 and 0.3 mm, and 10 and 30°, respectively. Optimal chamfer geometry for minimizing chipping and rake wear was small chamfer width and chamfer angle. The flank wear reached the minimum value for the tool with 0.18 mm chamfer width and 10° chamfer angle. The obtained composite model predicted good edge strength and minimum overall wear when the chamfer was 0.1 mm wide at a 10° angle. Thermal cracks were observed on the tools. They were small on the edges with the finest and least negative chamfer but were more significant on the more negative and greater chamfer. A great chamfer width and chamfer angle also resulted in insufficient chip evacuation. The results show how the edge geometry affects the tool’s reliability and wear and may help manufacturers minimize tool cost and downtime.

2021 ◽  
Vol 2070 (1) ◽  
pp. 012168
Author(s):  
Narender Maddela ◽  
Ch.Sai Kiran ◽  
Aluri Manoj ◽  
M. Kapila ◽  
B. Swapna ◽  
...  

Abstract The cutting forces that are generated during metal cutting influence the work piece precision, tool wear, the nature of the machined surface, and heat generation. These cutting forces can be measured analytically however; precise outcomes may not be expected due to its included stresses, parameters of cutting, and the perplexing tool geometry. Henceforth the exploratory estimation of cutting forces is fundamental. For this reason, a milling dynamometer of three-segment is structured, created, and tried to gauge the three cutting forces which are produced during the operation of milling strain gauges can be utilized to quantify dynamic and static cutting forces through milling dynamometer. During the process of metal cutting, a dynamometer that is based on strain gauge is fit for estimating three-force segments. The dynamometer was designed based on the octagonal ring principle. The octagonal rings orientation and location of strain gauges have resolved to expand affectability and to limit cross-affectability.


2021 ◽  
Author(s):  
Cristian Cappellini ◽  
Andrea Abeni

Abstract This paper concerns the tool wear in hard turning of AISI 52100 hardened steel by means of PCBN tools. The purposes of this work are the development of a tool wear model and its implementation in a FEM-based procedure for predicting crater and flank wear progression during machining operations for studying the influence of tool wear on the process in terms of tool geometry modifications and stress variation on the tool. Deform 2D FEM software has been utilized to simulate the orthogonal cutting process and the tool wear model has been implemented into the software by means of a dedicated subroutine able to estimate the wear rate and to update the geometry of the worn tool. Previous performed research showed the employment of analytical models for the evaluation of crater wear of flank wear separately, and FEM models only for the crater depth evolution without pointing their attention on the behavior of flank width. A new analytical model, concerning both crater and flank wear, has been proposed and validated by the authors. The validation of the model has been achieved by the comparison between experimental and simulated wear parameters. For doing this, an extended experimental campaign has been accomplished. The comparison results have shown good agreement. Once validated, the FEM strategy has been utilized for examining the influence of tool wear on the effective rake angle and the related tool stresses, individuating the excessive positive rake angle value as the final tool breakage mechanism.


2005 ◽  
Vol 128 (3) ◽  
pp. 787-791 ◽  
Author(s):  
S. Kannan ◽  
H. A. Kishawy ◽  
M. Balazinski

The machining of composites present a significant challenge to the industry. The abrasive reinforcements cause rapid tool wear and increases the machining cost. The results from machining metal matrix composites (MMCs) with conventional tools show that the main mechanism of tool wear includes two-body abrasion and three-body abrasion. A more flexible method that can be considered as a cost-saving technique is therefore sought for studying the machinability characteristics of these materials. In the previous paper, a methodology for predicting the tool flank wear progression during bar turning of MMCs was presented (Kishawy, Kannan, and Balazinski, Ann. CIRP, 54/1, pp. 55–59). In the proposed model, the wear volume due to two-body and three-body abrasion mechanisms was formulated. Then, the flank wear rate was quantified by considering the tool geometry in three-dimensional (3D) turning. Our main objective in this paper is to validate the proposed model by conducting extensive bar turning experiments under a wide range of cutting conditions, tool geometries, and composite material compositions. The cutting test results showed good agreement between predicted and measured tool wear progression.


2021 ◽  
Vol 68 (1) ◽  
Author(s):  
Annavarapu Venkata Sridhar ◽  
Balla Srinivasa Prasad ◽  
K. V. V. N. R. Chandra Mouli

AbstractIn this paper, a connection between vibration amplitude and tool wear when drilling of IS3048 steel utilizing different dimensioned tools is dissected through tests. Discriminant features, which are sensitive to drill wear and breakage, were developed. These were discovered to be somewhat impervious toward sensor location and cutting conditions. In the process, the vibration amplitude features a checking highlight dependent on ascertaining both the tools and their performance over vibrations, which was discovered to be somewhat powerful for on-line identification of drill tool breakage in both frequency and time domains. These vibrational amplitude signal features are directly affected, related to the tool geometry, which give higher chances of tool selection criteria during the drilling process. The experiments were carried out using solid carbide tool with change in tool geometry under dry conditions where the vibration amplitude for both is evaluated. The results revealed that cutting tool vibrational amplitude and tool wear were relatively dependent showing the tool selection of suitable tool geometry.


2006 ◽  
Vol 129 (3) ◽  
pp. 513-519 ◽  
Author(s):  
Kuan-Ming Li ◽  
Steven Y. Liang

The objective of this paper is to present physical and quantitative models for the rate of tool flank wear in turning under flood cooling conditions. The resulting models can serve as a basis to predict tool life and to plan for optimal machining process parameters. Analytical models including cutting force analysis, cutting temperature prediction, and tool wear mechanics are presented in order to achieve a thermo-mechanical understanding of the tool wear process. The cutting force analysis leverages upon Oxley’s model with modifications for lubricating and cooling effect of overhead fluid application. The cutting temperature was obtained by considering workpiece shear deformation, friction, and heat loss along with a moving or stationary heat source in the tool. The tool wear mechanics incorporate the considerations of abrasive, adhesion, and diffusion mechanisms as governed by contact stresses and temperatures. A model of built-up edge formation due to dynamic strain aging has been included to quantify its effects on the wear mechanisms. A set of cutting experiments using carbide tools on AISI 1045 steels were performed to calibrate the material-dependent coefficients in the models. Experimental cutting data were also used to validate the predictive models by comparing cutting forces, cutting temperatures, and tool lives under various process conditions. The results showed that the predicted tool lives were close to the experimental data when the built-up edge formation model appropriately captured this phenomenon in metal cutting.


Author(s):  
Thomas Bergs ◽  
Bingxiao Peng ◽  
Daniel Schraknepper ◽  
Thorsten Augspurger

Abstract In metal cutting process, modeling and predicting the tool wear development has been researched for decades. Many efforts have been made to study the cutting temperature as an indicator for the tool wear behavior. However, the determination of the cutting temperature in the critical contact area in process is still a challenge. In order to build temperature-dependent tool wear models, the temperature distribution of the workpiece was captured in this paper by an infrared thermography in orthogonal cutting of Direct Aged Inconel 718 with cemented carbide cutting tool WC-15Co. Instead of studying the temperature in critical cutting zone directly, the workpiece temperature distribution around the flank wear surface was determined inversely with the analytical Jaeger-solution based on the experimental data. The determined maximum cutting temperature on the flank wear surface has been successfully verified by FEM chip formation simulations. By means of this inverse approach, the cutting temperature on the flank surface can be determined as a function of tool wear VB. The experimental results showed that the cutting temperature increased with the increase of the tool wear VB. By means of this method, the temperature on the flank wear surface can be used as an important physical indicator to model and predict the tool wear development in future work.


2019 ◽  
Vol 23 (1) ◽  
pp. 297-302 ◽  
Author(s):  
S. Sai Venkatesh ◽  
T. A. Ram Kumar ◽  
A. P. Blalakumhren ◽  
M. Saimurugan ◽  
K. Prakash Marimuthu

Abstract Machining is the most widely used process in manufacturing, and tool wear plays a significant role in machining efficiency and effectiveness. There is a continuous requirement to manufacture high-quality products at a lower cost. Many past researches show that variations in tool geometry affect the cutting forces significantly. The increase in cutting forces leads to excessive vibrations in the system, giving a poor surface finish to the machined product. In this work, a 2D coupled thermo-mechanical model is developed using Abaqus/Explicit to predict the cutting forces during turning of mild steel. Johnson–Cook material model along with damage model has been used to define the material behavior. Coulomb’s friction model is considered for defining the interaction between the tool and the work piece. Metal cutting process is simulated for different sets of cutting conditions and compared with experimental results. The finite element method results correlate well with the experimental results.


Author(s):  
Jiju V Elias ◽  
S Asams ◽  
Jose Mathew

Mechanical micromachining techniques have gained much popularity in the manufacturing of microcomponents with complex shapes in the past couple of decades. Machining at the microscale poses several challenges such as size effect, which highly influences the material deformation mechanism resulting in a nonlinear variation in specific cutting energy, which accelerates the tool wear. Since micromachining is associated with micro-features, high precision and tight tolerances, the prediction of tool wear in advance is essential. Calibrated tool-wear models are generally used for the prediction of tool wear in the macro machining regime, whereas the applicability of these tool-wear models in the microscale machining is not explored much in the past. In the present work, Usui tool-wear model and worn tool geometry–based Malakizadi model are calibrated for the tool flank wear prediction during micro turning of Ti-6Al-4V alloy, using a hybrid approach involving both finite element simulations and cutting experiments. The validation experiments show that both the models can satisfactorily predict the tool-wear rate during micro turning with a percentage error of less than 15%. Results indicate that the worn tool geometry–based tool-wear model outperforms the conventional Usui model as it incorporates the instantaneous tool geometry, which also makes it suitable for different tool geometries.


1992 ◽  
Vol 114 (4) ◽  
pp. 666-672 ◽  
Author(s):  
Jong-Jin Park ◽  
A. Galip Ulsoy

On-line tool wear monitoring in metal-cutting operations is essential for an on-line process optimization. In this paper, tool flank wear is estimated on-line by utilizing a nonlinear observer with the feedback of cutting force measurements. Based on a previously developed cutting process model for turning, a nonlinear observer is designed such that the estimated flank wear converges to the actual flank wear development in the presence of poor initial estimates. The stability analysis for the resulting observer error dynamic system is carried out using a physical limitation of the actual flank wear development and the Total Stability Theorem. The experimental results show that the proposed nonlinear observer estimates the flank wear quite well not only in the presence of poor initial estimates but also in the presence of unexpected fluctuations in the cutting force measurements. However, the method has drawbacks resulting from difficulties in obtaining accurate model parameters. An adaptive version of the presented nonlinear observer, periodically calibrated by off-line direct tool wear measurements using computer vision, is considered to be a promising strategy for industrial implementation.


Sign in / Sign up

Export Citation Format

Share Document