bifc assay
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 1)

2020 ◽  
Vol 52 (9) ◽  
pp. 998-1006
Author(s):  
Jing Shen ◽  
Wenlu Zhang ◽  
Chunyang Gan ◽  
Xiafei Wei ◽  
Jie Li ◽  
...  

Abstract Bimolecular fluorescence complementation (BiFC) is a popular method used to detect protein–protein interactions. For a BiFC assay, a fluorescent protein is usually split into two parts, and the fluorescence is recovered upon the interaction between the fused proteins of interest. As an elegant extension of BiFC, a tripartite superfold green fluorescent protein (sfGFP) system that has the advantages of low background fluorescence and small fusion tag size has been developed. However, the tripartite system exhibits a low fluorescence signal in some cases. To address this problem, we proposed to increase the affinity between the two parts, G1–9 and G11, of the tripartite system by adding affinity pairs. Among the three affinity pairs tested, LgBiT-HiBiT improved both the signal and signal-to-noise (S/N) ratio to the greatest extent. More strikingly, the direct covalent fusion of G11 to G1–9, which converted the tripartite system into a new bipartite system, enhanced the S/N ratio from 20 to 146, which is superior to the bipartite sfGFP system split at 157/158 or 173/174. Our results implied that the 10th β-strand of sfGFP has a low affinity and a good recovery efficiency to construct a robust BiFC system, and this concept might be applied to other fluorescent proteins with similar structure to construct new BiFC systems.


2020 ◽  
Vol 21 (9) ◽  
pp. 3376
Author(s):  
Songhong Wei ◽  
Yingling Wang ◽  
Jianming Zhou ◽  
Shibo Xiang ◽  
Wenxian Sun ◽  
...  

Ustilaginoidea virens, which causes rice false smut (RFS), is one of the most detrimental rice fungal diseases and poses a severe threat to rice production and quality. Effectors in U. virens often act as a group of essential virulence factors that play crucial roles in the interaction between host and the pathogen. Thus, the functions of individual effectors in U. virens need to be further explored. Here, we demonstrated a small secreted hypersensitive response-inducing protein (hrip), named UvHrip1, which was highly conserved in U. virens isolates. UvHrip1 was also proven to suppress necrosis-like defense symptoms in N. benthamiana induced by the oomycete elicitor INF1. The localization of UvHrip1 was mainly in the nuclei and cytoplasm via monitoring the UvHrip1-GFP fusion protein in rice cells. Furthermore, Y2H and BiFC assay demonstrated that UvHrip1 interacted with OsHGW, which is a critical regulator in heading date and grain weight signaling pathways in rice. Expression patterns of defense- and heading date-related genes, OsPR1#051 and OsMYB21, were down-regulated over U. virens infection in rice. Collectively, our data provide a theory for gaining an insight into the molecular mechanisms underlying the UvHrip1 virulence function.


2020 ◽  
Vol 103 (2) ◽  
pp. 333-342 ◽  
Author(s):  
Yang Xu ◽  
Rong Liu ◽  
N Adrian Leu ◽  
Lei Zhang ◽  
Ilsiya Ibragmova ◽  
...  

Abstract MEIOB and SPATA22 are meiosis-specific proteins, interact with each other, and are essential for meiotic recombination and fertility. Aspartic acid 383 (D383) in MEIOB is critical for its interaction with SPATA22 in biochemical studies. Here we report that genetic studies validate the requirement of D383 for the function of MEIOB in mice. The MeiobD383A/D383A mice display meiotic arrest due to depletion of both MEIOB and SPATA22 proteins in the testes. We developed a cell-based bimolecular fluorescence complementation (BiFC) assay, in which MEIOB and SPATA22 are fused to split YFP moieties and their co-expression in cultured cells leads to the MEIOB–SPATA22 dimerization and reconstitution of the fluorophore. As expected, the interaction-disrupting D383A substitution results in the absence of YFP fluorescence in the BiFC assay. A high-throughput screen of small molecule libraries identified candidate hit compounds at a rate of 0.7%. Isocotoin, a hit compound from the natural product library, inhibits the MEIOB–SPATA22 interaction and promotes their degradation in HEK293 cells in a dose-dependent manner. Therefore, the BiFC assay can be employed to screen for small molecule inhibitors that disrupt protein–protein interactions or promote degradation of meiosis-specific proteins.


2019 ◽  
Vol 20 (13) ◽  
pp. 3225 ◽  
Author(s):  
Yong ◽  
Zhang ◽  
Lyu

Our previous studies have indicated that a partial NAC domain protein gene is strongly up-regulated by cold stress (4 °C) in tiger lily (Lilium lancifolium). In this study, we cloned the full-length of this NAC gene, LlNAC2, to further investigate the function of LlNAC2 in response to various abiotic stresses and the possible involvement in stress tolerance of the tiger lily plant. LlNAC2 was noticeably induced by cold, drought, salt stresses, and abscisic acid (ABA) treatment. Promoter analysis showed that various stress-related cis-acting regulatory elements were located in the promoter of LlNAC2; and the promoter was sufficient to enhance activity of GUS protein under cold, salt stresses and ABA treatment. DREB1 (dehydration-responsive binding protein1) from tiger lily (LlDREB1) was proved to be able to bind to the promoter of LlNAC2 by yeast one-hybrid (Y1H) assay. LlNAC2 was shown to physically interact with LlDREB1 and zinc finger-homeodomain ZFHD4 from the tiger lily (LlZFHD4) by bimolecular fluorescence complementation (BiFC) assay. Overexpressing LlNAC2 in Arabidopsis thaliana showed ABA hypersensitivity and enhanced tolerance to cold, drought, and salt stresses. These findings indicated LlNAC2 is involved in both DREB/CBF-COR and ABA signaling pathways to regulate stress tolerance of the tiger lily.


2017 ◽  
Vol 44 (9) ◽  
pp. 917 ◽  
Author(s):  
Viet The Ho ◽  
Anh Nguyet Tran ◽  
Francesco Cardarelli ◽  
Pierdomenico Perata ◽  
Chiara Pucciariello

Following the identification of the calcineurin B-like interacting protein kinase 15 (CIPK15), which is a regulator of starch degradation, the low O2 signal elicited during rice germination under submergence has been linked to the sugar sensing cascade and calcium (Ca2+) signalling. CIPK proteins are downstream effectors of calcineurin B-like proteins (CBLs), which act as Ca2+ sensors, whose role under low O2 has yet to be established. In the present study we describe CBL4 as a putative CIPK15 partner, transcriptionally activated under low O2 in rice coleoptiles. The transactivation of the rice embryo CBL4 transcript and CBL4 promoter was influenced by the Ca2+ blocker ruthenium red (RR). The bimolecular fluorescence complementation (BiFC) assay associated to fluorescence recovery after photobleaching (FRAP) analysis confirmed that CBL4 interacts with CIPK15. The CBL4-CIPK15 complex is localised in the cytoplasm and the plasma-membrane. Experiments in protoplasts showed a dampening of α-amylase 3 (RAMY3D) expression after CBL4 silencing by artificial miRNA. Our results suggest that under low O2, the Ca2+ sensor CBL4 interacts with CIPK15 to regulate RAMY3D expression in a Ca2+-dependent manner.


2013 ◽  
Vol 77 (6) ◽  
pp. 1333-1336 ◽  
Author(s):  
Satoko SHINJO ◽  
Etsu TASHIRO ◽  
Masaya IMOTO
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document