scholarly journals Antioxidant Enzymes and Heat Shock Protein Genes from Liposcelis bostrychophila Are Involved in Stress Defense upon Heat Shock

Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 839
Author(s):  
Ze Qing Miao ◽  
Yan Qing Tu ◽  
Peng Yu Guo ◽  
Wang He ◽  
Tian Xing Jing ◽  
...  

Psocids are a new risk for global food security and safety because they are significant worldwide pests of stored products. Among these psocids, Liposcelis bostrychophila has developed high levels of resistance or tolerance to heat treatment in grain storage systems, and thus has led to investigation of molecular mechanisms underlying heat tolerance in this pest. In this study, the time-related effects of thermal stress treatments at relatively high temperatures on the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidases (POD), glutathione-S-transferases (GST) and malondialdehyde (MDA), of L. bostrychophila were determined. Thermal stress resulted that L. bostrychophila had a significantly higher MDA concentration at 42.5 °C, which indicated that the heat stress increased lipid peroxidation (LPO) contents and oxidative stress in this psocid pest. Heat stress also resulted in significant elevation of SOD, CAT and GST activities but decreased POD activity. Our data indicates that different antioxidant enzymes contribute to defense mechanisms, counteracting oxidative damage in varying levels. POD play minor roles in scavenging deleterious LPO, while enhanced SOD, CAT and GST activities in response to thermal stress likely play a more important role against oxidative damage. Here, we firstly identified five LbHsps (four LbHsp70s and one LbHsp110) from psocids, and most of these LbHsps (except LbHsp70-1) are highly expressed at fourth instar nymph and adults, and LbHsp70-1 likely presents as a cognate form of HSP due to its non-significant changes of expression. Most LbHsp70s (except LbHsp70-4) are significantly induced at moderate high temperatures (<40 °C) and decreased at extreme high temperatures (40–45 °C), but LbHsp110-1 can be significantly induced at all high temperatures. Results of this study suggest that the LbHsp70s and LbHsp110 genes are involved in tolerance to thermal stress in L. bostrychophila, and antioxidant enzymes and heat shock proteins may be coordinately involved in the tolerance to thermal stress in psocids.

2016 ◽  
Vol 107 (3) ◽  
pp. 382-390 ◽  
Author(s):  
A. Ali ◽  
M. A. Rashid ◽  
Q. Y. Huang ◽  
C. Wong ◽  
C.-L. Lei

AbstractThe oriental army worm Mythimna separata (Lepidoptera: Noctuidae) is a migratory pest in Eastern Asia and China. Seasonal high temperatures in Southern China and low temperatures in Northern China are pressures favouring the annual migration of this species, while cold tolerance determines the northern limit of its overwintering range. A number of physiological stress responses occur in insects as a result of variations in temperature. One reaction to thermal stress is the generation of reactive oxygen species (ROS), which can be harmful by causing oxidative damage. The time-related effects (durations of 1, 4 and 7 h) of thermal stress treatments of M. separata at comparatively low (5, 10, 15 and 20°C) and high (30, 35, 40 and 45°C) temperatures on the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POX) and glutathione S-transferases (GSTs), and total antioxidant capacity (T-AOC) were determined. Thermal stress resulted in significant elevation of the activities of SOD, CAT and GSTs, indicating that these enzymes contribute to defence mechanisms counteracting oxidative damage caused by an increase in ROS. However, at high-temperatures, POX and T-AOC were also found to contribute to scavenging ROS. Our results also indicate that extreme temperatures lead to elevated ROS production in M. separata. The present study confirms that thermal stress can be responsible for oxidative damage. To overcome such stress, antioxidant enzymes play key roles in diminishing oxidative damage in M. separata.


2020 ◽  
Vol 644 ◽  
pp. 105-117 ◽  
Author(s):  
NJ Delorme ◽  
L Biessy ◽  
PM South ◽  
LN Zamora ◽  
NLC Ragg ◽  
...  

The marine environment is ever-changing, with daily and seasonal variations in factors such as food availability and seawater temperature. These stressors can affect physiological processes in aquatic organisms, resulting in sub-lethal or lethal consequences. This study assessed the effects of food limitation (i.e. fasting) on heat-stress responses in juveniles (~1.3 mm in shell length) of the green-lipped mussel Perna canaliculus. Fasting for up to 24 h did not have a significant effect on oxidative damage (protein carbonyls and lipid hydroperoxide accumulation) or the activity of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase) after exposure to heat stress. However, fasting for 54 h and subsequent heat stress resulted in increased oxidative damage and decreased activity of antioxidant enzymes in juvenile mussels. Gene expression of 70 kDa heat shock protein (hsp70) was only significantly affected by heat shock, not nutritional status. Tissue carbohydrate and protein levels were significantly depleted by 54 h of fasting; as these proximate components represent key energy substrates for bivalves, it is suggested that energy limitation contributes to compromised antioxidant activity and predisposition to oxidative damage.


2011 ◽  
Vol 110 (4) ◽  
pp. 935-942 ◽  
Author(s):  
Ashley J. Smuder ◽  
Andreas N. Kavazis ◽  
Kisuk Min ◽  
Scott K. Powers

Doxorubicin (Dox) is a potent antitumor agent used in cancer treatment. Unfortunately, Dox is myotoxic and results in significant reductions in skeletal muscle mass and function. Complete knowledge of the mechanism(s) by which Dox induces toxicity in skeletal muscle is incomplete, but it is established that Dox-induced toxicity is associated with increased generation of reactive oxygen species and oxidative damage within muscle fibers. Since muscular exercise promotes the expression of numerous cytoprotective proteins (e.g., antioxidant enzymes, heat shock protein 72), we hypothesized that muscular exercise will attenuate Dox-induced damage in exercise-trained muscle fibers. To test this postulate, Sprague-Dawley rats were randomly assigned to the following groups: sedentary, exercise, sedentary with Dox, or exercise with Dox. Our results show increased oxidative stress and activation of cellular proteases (calpain and caspase-3) in skeletal muscle of animals treated with Dox. Importantly, our findings reveal that exercise can prevent the Dox-induced oxidative damage and protease activation in the trained muscle. This exercise-induced protection against Dox-induced toxicity may be due, at least in part, to an exercise-induced increase in muscle levels of antioxidant enzymes and heat shock protein 72. Together, these novel results demonstrate that muscular exercise is a useful countermeasure that can protect skeletal muscle against Dox treatment-induced oxidative stress and protease activation in skeletal muscles.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joon-Yung Cha ◽  
Sang-Ho Kang ◽  
Imdad Ali ◽  
Sang Cheol Lee ◽  
Myung Geun Ji ◽  
...  

Abstract Humic acid (HA) is composed of a complex supramolecular association and is produced by humification of organic matters in soil environments. HA not only improves soil fertility, but also stimulates plant growth. Although numerous bioactivities of HA have been reported, the molecular evidences have not yet been elucidated. Here, we performed transcriptomic analysis to identify the HA-prompted molecular mechanisms in Arabidopsis. Gene ontology enrichment analysis revealed that HA up-regulates diverse genes involved in the response to stress, especially to heat. Heat stress causes dramatic induction in unique gene families such as Heat-Shock Protein (HSP) coding genes including HSP101, HSP81.1, HSP26.5, HSP23.6, and HSP17.6A. HSPs mainly function as molecular chaperones to protect against thermal denaturation of substrates and facilitate refolding of denatured substrates. Interestingly, wild-type plants grown in HA were heat-tolerant compared to those grown in the absence of HA, whereas Arabidopsis HSP101 null mutant (hot1) was insensitive to HA. We also validated that HA accelerates the transcriptional expression of HSPs. Overall, these results suggest that HSP101 is a molecular target of HA promoting heat-stress tolerance in Arabidopsis. Our transcriptome information contributes to understanding the acquired genetic and agronomic traits by HA conferring tolerance to environmental stresses in plants.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1015 ◽  
Author(s):  
Shuangming Yue ◽  
Zhisheng Wang ◽  
Lizhi Wang ◽  
Quanhui Peng ◽  
Bai Xue

Heat stress (HS) exerts significant effects on the production of dairy animals through impairing health and biological functions. However, the molecular mechanisms related to the effect of HS on dairy cow milk production are still largely unknown. The present study employed an RNA-sequencing approach to explore the molecular mechanisms associated with a decline in milk production by the functional analysis of differentially expressed genes (DEGs) in mammary glands of cows exposed to HS and non-heat-stressed cows. The results of the current study reveal that HS increases the rectal temperature and respiratory rate. Cows under HS result in decreased bodyweight, dry matter intake (DMI), and milk yield. In the current study, a total of 213 genes in experimental cow mammary glands was identified as being differentially expressed by DEGs analysis. Among identified genes, 89 were upregulated, and 124 were downregulated. Gene Ontology functional analysis found that biological processes, such as immune response, chaperone-dependent refolding of protein, and heat shock protein binding activity, were notably affected by HS. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis found that almost all of the top-affected pathways were related to immune response. Under HS, the expression of heat shock protein 90 kDa beta I (HSP90B1) and heat shock 70 kDa protein 1A was upregulated, while the expression of bovine lymphocyte antigen (BoLA) and histocompatibility complex, class II, DRB3 (BoLA-DRB3) was downregulated. We further explored the effects of HS on lactation-related genes and pathways and found that HS significantly downregulated the casein genes. Furthermore, HS increased the expression of phosphorylation of mammalian target of rapamycin, cytosolic arginine sensor for mTORC1 subunit 2 (CASTOR2), and cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1), but decreased the phosphorylation of Janus kinase-2, a signal transducer and activator of transcription factor-5. Based on the findings of DMI, milk yield, casein gene expression, and the genes and pathways identified by functional annotation analysis, it is concluded that HS adversely affects the immune function of dairy cows. These results will be beneficial to understand the underlying mechanism of reduced milk yield in HS cows.


2019 ◽  
Vol 7 (4) ◽  
pp. 96 ◽  
Author(s):  
Senjie Lin ◽  
Liying Yu ◽  
Huan Zhang

Coral reef-associated Symbiodiniaceae live in tropical and oligotrophic environments and are prone to heat and nutrient stress. How their metabolic pathways respond to pulses of warming and phosphorus (P) depletion is underexplored. Here, we conducted RNA-seq analysis to investigate transcriptomic responses to thermal stress, phosphate deprivation, and organic phosphorus (OP) replacement in Fugacium kawagutii. Using dual-algorithm (edgeR and NOIseq) to remedy the problem of no replicates, we conservatively found 357 differentially expressed genes (DEGs) under heat stress, potentially regulating cell wall modulation and the transport of iron, oxygen, and major nutrients. About 396 DEGs were detected under P deprivation and 671 under OP utilization, both mostly up-regulated and potentially involved in photosystem and defensome, despite different KEGG pathway enrichments. Additionally, we identified 221 genes that showed relatively stable expression levels across all conditions (likely core genes), mostly catalytic and binding proteins. This study reveals a wide range of, and in many cases previously unrecognized, molecular mechanisms in F. kawagutii to cope with heat stress and phosphorus-deficiency stress. Their quantitative expression dynamics, however, requires further verification with triplicated experiments, and the data reported here only provide clues for generating testable hypotheses about molecular mechanisms underpinning responses and adaptation in F. kawagutii to temperature and nutrient stresses.


2020 ◽  
Vol 21 (21) ◽  
pp. 8374
Author(s):  
Wen-Xian Gai ◽  
Xiao Ma ◽  
Yang Li ◽  
Jing-Jing Xiao ◽  
Abid Khan ◽  
...  

Heat shock transcription factor (Hsf) plays an important role in regulating plant thermotolerance. The function and regulatory mechanism of CaHsfA1d in heat stress tolerance of pepper have not been reported yet. In this study, phylogenetic tree and sequence analyses confirmed that CaHsfA1d is a class A Hsf. CaHsfA1d harbored transcriptional function and predicted the aromatic, hydrophobic, and acidic (AHA) motif mediated function of CaHsfA1d as a transcription activator. Subcellular localization assay showed that CaHsfA1d protein is localized in the nucleus. The CaHsfA1d was transcriptionally up-regulated at high temperatures and its expression in the thermotolerant pepper line R9 was more sensitive than that in thermosensitive pepper line B6. The function of CaHsfA1d under heat stress was characterized in CaHsfA1d-silenced pepper plants and CaHsfA1d-overexpression Arabidopsis plants. Silencing of the CaHsfA1d reduced the thermotolerance of the pepper, while CaHsfA1d-overexpression Arabidopsis plants exhibited an increased insensitivity to high temperatures. Moreover, the CaHsfA1d maintained the H2O2 dynamic balance under heat stress and increased the expression of Hsfs, Hsps (heat shock protein), and antioxidant gene AtGSTU5 (glutathione S-transferase class tau 5) in transgenic lines. Our findings clearly indicate that CaHsfA1d improved the plant thermotolerance via regulating the expression of stress- and antioxidant-related genes.


2020 ◽  
Author(s):  
Devender Singh ◽  
Manish Kumar ◽  
Rakesh Kumar ◽  
Tirtha Kumar Datta

Abstract Background Thermal stress elicits detrimental effect in reproduction performance of Bubalus bubalis, buffalo. Riverine buffalo oocytes and early embryos possess differential ability to grow and survive under thermal stress condition. It is interesting to know how precisely the short and transient heat stress impacts growth and development of buffalo oocytes and early embryos in a stage specific manner. In this study, we aim to identify the most sensitive and vulnerable stage of oocytes and early embryos against transient heat stress as well as unravel the underlying molecular signals responsible for the stunted embryo development under thermal stress. It was assessed by utilizing six different groups of oocytes and embryos with an incorporation of 4 h transient heat shock at 40ºC during different stage of in-vitro maturation (IVM) and in vitro culture (IVC). Results The stressed oocytes of group (grp) 1, 2 and 3 exhibit comparable paces of attaining metaphase-II (M-II) phase at different time interval of IVM. The most detrimental effect of heat stress was observed in grp 2 with sharp reduction in morula to blastocysts transition rate (p<0.05). Expression of mRNA transcripts of HSP8, MnSOD and Sirt-3 genes were significantly increased from mid-IVM to 4-cell embryo although subsequently, down-regulated in embryos of 8-16 cells, morulae and blastocysts. Expression of maternal to embryo transition (MET) genes viz. PAP, U2Af and eIF4A was significantly down regulated from 2-cell embryo to morula (p<0.05). Maternal recognition of pregnancy (MRP) and morulae to blastocyst transition genes were poorly expressed in grp 2 than of the other stress groups (p<0.05). Conclusions Disruption of molecular signal has implicated in the poor formation of inner cell mass (ICM) and trophectoderm (TE) cells, this results in compromised development prospects of early buffalo embryos in a stage specific manner. Well-coordinated molecular signals associated with heat stress held responsible for reduced development of early embryo. We establish the most vulnerable stage of buffalo oocytes and presumptive zygotes against transient heat shock and observe a narrow window as the most critical stage for regulating the development potential of the prospective embryos under short heat stress environment.


2002 ◽  
Vol 205 (2) ◽  
pp. 273-278
Author(s):  
Yueh-Tsu King ◽  
Chih-Sheng Lin ◽  
Jyh-Hung Lin ◽  
Wen-Chuan Lee

SUMMARY Molecular mechanisms of whole-body thermotolerance (WBT) in mammals have not been investigated thoroughly. The purpose of this study was to assess the induction of the 70 kDa heat shock protein (HSP70) and antioxidant enzyme activity in animal WBT, which was induced by whole-body hyperthermia (WBH) in mice. As a preconditioning treatment, WBH was applied to mice to induce WBT. Synthesis of inducible HSP70 (HSP70i) and quantification of its increased level in liver were investigated by one- and two-dimensional polyacrylamide gel electrophoresis and immunoblotting. HSP70i synthesis in mice liver was induced by non-lethal WBH (41°C, 30 min). When compared to control animals, the level of liver HSP70i increased substantially (by 3.6-fold; P&lt;0.0001). When exposed to 30 min of hyperthermia preconditioning, and after recovery for 48 h, the survival rate was 88.2 %, which was significantly higher than that of the control group (37.5 %; P&lt;0.01). Moreover, the survival rate of animals subjected to preconditioning for 15 min was 72.2 %, which was also significantly higher than that of the control group (P&lt;0.05). In contrast, the survival rate of animals subjected to preconditioning for 45 min was 63.5 %, which was not different from the control group. Nonetheless, the protection index of the group subjected to 15 min and 30 min of preconditioning was 1.93 and 2.37, respectively. Furthermore, to assess their contributions to WBT, the activities of antioxidant enzymes were also measured. After 48 h of recovery in preconditioned animals, hepatic antioxidant enzyme activities, including superoxide dismutase, catalase and glutathione peroxidase, had not changed significantly. To study the molecular mechanism of WBT, we successfully developed a mouse model and suggest that, rather than the activities of antioxidant enzymes, it is HSP70i that has a role to help animals survive during severe heat stress.


2010 ◽  
Vol 135 (2) ◽  
pp. 116-124 ◽  
Author(s):  
Yali He ◽  
Bingru Huang

Understanding antioxidant mechanisms for heat stress is important for improving heat tolerance in cool-season plant species. The objective of this study was to identify antioxidant enzymes associated with cultivar variations in heat tolerance in kentucky bluegrass (Poa pratensis) by comparing heat responses of activity and isoforms of antioxidant enzymes in two cultivars contrasting in heat tolerance. Plants of heat-tolerant ‘Eagleton’ and heat-sensitive ‘Brilliant’ were exposed to 20 °C (control) or 40 °C (heat stress) for 28 days in growth chambers. Chlorophyll (Chl) a content remained unchanged and Chl b content increased in ‘Eagleton’, while both of them decreased in ‘Brilliant’, and by 28 days, ‘Eagleton’ had significantly higher Chl a and b content than ‘Brilliant’. The activities of superoxide dismutase (SOD) were significantly higher in ‘Eagleton’ than in ‘Brilliant’ by 28 days of heat stress. An isozyme SOD2 was induced early during heat stress in ‘Eagleton’, while isozyme SOD3 degraded, to a lesser extent in ‘Eagleton’ than in ‘Brilliant’. Catalase (CAT) activity significantly increased in ‘Brilliant’ but remained constant in ‘Eagleton’, and ‘Brilliant’ had a significantly higher CAT activity and isozyme CAT1 than ‘Eagleton’ during heat stress. Significant increases in ascorbate peroxidase (APX) activities occurred under heat stress, to a greater extent in ‘Eagleton’, whereas isozymes did not exhibit difference between cultivars. Guaiacol-peroxidase (POD) activity declined during heat stress in both cultivars. The intensity of POD isozymes in ‘Brilliant’ remained constant, while ‘Eagleton’ showed a transient increases in POD1 at 7 days of heat stress. Our results indicated that antioxidant defense mechanisms for heat tolerance in kentucky bluegrass could be mainly associated with changes in activity and forms of isozymes of SOD for O2 scavenging and APX activity for H2O2 scavenging under heat stress.


Sign in / Sign up

Export Citation Format

Share Document