scholarly journals The Sharma–Mittal Model’s Implications on FRW Universe in Chern–Simons Gravity

Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 428
Author(s):  
Sarfraz Ali ◽  
Muhammad Hummad Waheed ◽  
Muhammad Imran Asjad ◽  
Khuram Ali Khan ◽  
Thanin Sitthiwirattham ◽  
...  

The Sharma–Mittal holographic dark energy model is investigated in this paper using the Chern–Simons modified gravity theory. We investigate several cosmic parameters, including the deceleration, equation of state, square of sound speed, and energy density. According to the deceleration parameter, the universe is in an decelerating and expanding phase known as de Sitter expansion. The Sharma–Mittal HDE model supports a deceleration to acceleration transition that is compatible with the observational data. The EoS depicts the universe’s dominance era through a number of components, such as ω=0, 13, 1, which indicate that the universe is influenced by dust, radiation, and stiff fluid, while −1<ω<13, ω=−1, and ω<−1 are conditions for quintessence DE, ΛCDM, and Phantom era dominance. Our findings indicate that the universe is in an accelerated expansion phase, and this is similar to the observational data.

2016 ◽  
Vol 25 (04) ◽  
pp. 1650040 ◽  
Author(s):  
A. Abdolmaleki ◽  
T. Najafi

Modified gravity (MG) and generalized second law (GSL) of thermodynamics are interesting topics in the modern cosmology. In this regard, we investigate the GSL of gravitational thermodynamics in the framework of modified Gauss–Bonnet (GB) gravity or [Formula: see text]-gravity. We consider a spatially FRW universe filled with the pressureless matter and radiation enclosed by the dynamical apparent horizon with the Hawking temperature. For two viable [Formula: see text] models, we first numerically solve the set of differential equations governing the dynamics of [Formula: see text]-gravity. Then, we obtain the evolutions of the Hubble parameter, the GB curvature invariant term, the density and equation of state (EoS) parameters as well as the deceleration parameter. In addition, we check the energy conditions for both models and finally examine the validity of the GSL. For the selected [Formula: see text] models, we conclude that both models have a stable de Sitter attractor. The EoS parameters behave quite similar to those of the [Formula: see text]CDM model in the radiation/matter dominated epochs, then they enter the phantom region before reaching the de Sitter attractor with [Formula: see text]. The deceleration parameter starts from the radiation/matter dominated eras, then transits from a cosmic deceleration to acceleration and finally approaches a de Sitter regime at late times, as expected. Furthermore, the GSL is respected for both models during the standard radiation/matter dominated epochs. Thereafter when the universe becomes accelerating, the GSL is violated in some ranges of scale factor. At late times, the evolution of the GSL predicts an adiabatic behavior for the accelerated expansion of the universe.


2001 ◽  
Vol 16 (20) ◽  
pp. 1303-1313 ◽  
Author(s):  
A. A. SEN ◽  
S. SEN

We have investigated the cosmological scenarios with a four-dimensional effective action which is connected with multidimensional, supergravity and string theories. The solution for the scale factor is such that initially universe undergoes a decelerated expansion but in late times it enters into the accelerated expansion phase. In fact, it asymptotically becomes a de Sitter universe. The dilaton field in our model is a decreasing function of time and it becomes a constant in late time resulting the exit from the scalar–tensor theory to the standard Einstein's gravity. Also the dilaton field results in the existence of a positive cosmological constant in late times.


2005 ◽  
Vol 20 (15) ◽  
pp. 1147-1154 ◽  
Author(s):  
YI-HUAN WEI

We discuss the late-time property of universe and phantom field in the SO(1, 1) dark energy model for the potential V = V0e-βΦα with α and β two positive constants. We assume in advance some conditions satisfied by the late-time field to simplify equations, which are confirmed to be correct from the eventual results. For α < 2, the field falls exponentially off and the phantom equation of state rapidly approaches -1. When α = 2, the kinetic energy ρk and the coupling energy ρc become comparable but there is always ρk < -ρc so that the phantom property of field proceeds to hold. The analysis on the perturbation to the late-time field Φ illustrates the square effective mass of the perturbation field is always positive and thus the phantom is stable. The universe considered currently may evade the future sudden singularity and will evolve to de Sitter expansion phase.


2009 ◽  
Vol 24 (22) ◽  
pp. 1785-1792 ◽  
Author(s):  
B. NAYAK ◽  
L. P. SINGH

The present-day accelerated expansion of the universe is naturally addressed within the Brans–Dicke theory just by using holographic dark energy model with inverse of Hubble scale as IR cutoff and power law temporal behavior of scale factor. It is also concluded that if the universe continues to expand, then one day it might be completely filled with dark energy.


2014 ◽  
Vol 29 (02) ◽  
pp. 1450015 ◽  
Author(s):  
M. SHARIF ◽  
SHAMAILA RANI

This paper is devoted to study the power-law entropy corrected holographic dark energy (ECHDE) model in the framework of f(T) gravity. We assume infrared (IR) cutoff in terms of Granda–Oliveros (GO) length and discuss the constructed f(T) model in interacting as well as in non-interacting scenarios. We explore some cosmological parameters like equation of state (EoS), deceleration, statefinder parameters as well as ωT–ωT′ analysis. The EoS and deceleration parameters indicate phantom behavior of the accelerated expansion of the universe. It is mentioned here that statefinder trajectories represent consistent results with ΛCDM limit, while evolution trajectory of ωT–ωT′ phase plane does not approach to ΛCDM limit for both interacting and non-interacting cases.


2016 ◽  
Vol 25 (02) ◽  
pp. 1650025 ◽  
Author(s):  
Giovanni Otalora

Although equivalent to general relativity, teleparallel gravity (TG) is conceptually speaking a completely different theory. In this theory, the gravitational field is described by torsion, not by curvature. By working in this context, a new model is proposed in which the four-derivative of a canonical scalar field representing dark energy is nonminimally coupled to the “vector torsion”. This type of coupling is motivated by the fact that a scalar field couples to torsion through its four-derivative, which is consistent with local spacetime kinematics regulated by the de Sitter group [Formula: see text]. It is found that the current state of accelerated expansion of the universe corresponds to a late-time attractor that can be (i) a dark energy-dominated de Sitter solution ([Formula: see text]), (ii) a quintessence-type solution with [Formula: see text], or (iii) a phantom-type [Formula: see text] dark energy.


2008 ◽  
Vol 17 (03n04) ◽  
pp. 651-658 ◽  
Author(s):  
WINFRIED ZIMDAHL

Different models of the cosmic substratum which pretend to describe the present stage of accelerated expansion of the Universe, like the ΛCDM model or the Chaplygin gas, can be seen as special realizations of a holographic dark energy cosmology if the option of an interaction between pressureless dark matter and dark energy is taken seriously. The corresponding interaction strength parameter plays the role of a cosmological constant. Differences occur at the perturbative level. In particular, the pressure perturbations are intrinsically nonadiabatic.


2018 ◽  
Vol 15 (09) ◽  
pp. 1850150 ◽  
Author(s):  
I. Brevik ◽  
V. V. Obukhov ◽  
A. V. Timoshkin

We propose to describe the acceleration of the universe by introducing a model of two coupled fluids. We focus on the accelerated expansion at the early stages. The inflationary expansion is described in terms of a van der Waals equation of state for the cosmic fluid, when account is taken of bulk viscosity. We assume that there is a weak interaction between the van der Waals fluid and the second component (matter). The gravitational equations for the energy densities of the two components are solved for a homogeneous and isotropic Friedmann–Robertson–Walker (FRW) universe, and analytic expressions for the Hubble parameter are obtained. The slow-roll parameters, the spectral index, and the tensor-to-scalar ratio are calculated and compared with the most recent astronomical data from the Planck satellite. Given reasonable restriction on the parameters, the agreement with observations is favorable.


2020 ◽  
Vol 2 (1) ◽  
pp. 97-111
Author(s):  
Horst Fritsch ◽  
Eberhard Schluecker

The asymmetric cosmic time is a logical consequence of the General Theory of Relativity (GR), if one demands that it should apply to the entire cosmos. From the simplest cosmological model that is consistent with the ART (Einstein-de Sitter model) thus follows the < Cosmic Time Hypothesis > (CTH), which offers solutions for many unsolved problems of cosmology that the current standard model of cosmology (ɅCDM model) cannot explain. According to the CTH, space, time and matter form a unit and develop evolutionarily according to identical, time-dependent laws. According to the CTH time has neither beginning nor end. The "big bang" disappears into the infinite past, which is why the universe manages without inflation. The accelerated expansion of the universe is also unlikely to occur if the SN-Ia measurement results are interpreted using the CTH. The cosmological constant Ʌ can then be omitted (Ʌ=0) and consequently no "dark energy" is needed. In addition, the CTH also provides interesting results on the topics: Initial conditions for hypotheses, stability of the expanding, flat universe (Ω=1), cosmic energy balance (is there negative energy ?), theory of earth expansion, unification of natural forces, Mach's principle. Should the CTH receive broad experimental confirmation, the GR could be extended to the "Universal Relativity Theory" (UR).


2019 ◽  
Vol 34 (35) ◽  
pp. 1950287
Author(s):  
Abdul Jawad ◽  
Saba Qummer ◽  
Shamaila Rani ◽  
M. Younas

The illustration of cosmic acceleration is being presented in the framework of DGP braneworld and dynamical Chern–Simons modified gravity in the presence of casual Israel–Stewart formalism. In this way, we discuss the evolution parameter which leads to the accelerated expansion of the universe in the phantom as well as quintessence region for both gravities. The squared speed of sound [Formula: see text] leads to the stable behavior of the current physical system in both gravities in the later epoch. Also, the entropy variation, as well as thermal equilibrium condition, remains valid in both frameworks at the present and later epoch.


Sign in / Sign up

Export Citation Format

Share Document