A Light Space Manipulator with High Load-to-Weight Ratio: System Development and Compliance Control

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhiwei Wu ◽  
Yongting Chen ◽  
Wenfu Xu

In order to meet the requirements of the space environment for the lightweight and load capacity of the manipulator, this paper designs a lightweight space manipulator with a weight of 9.23 kg and a load of 2 kg. It adopts the EtherCAT communication protocol and has the characteristics of high load-to-weight ratio. In order to achieve constant force tracking under the condition of unknown environmental parameters, an integral adaptive admittance control method is proposed. The control law is expressed as a third-order linear system equation, the operating environment is equivalent to a spring model, and the control error transfer function is derived. The control performance under the step response is further analyzed. The simulation results show that the proposed integral adaptive admittance control method has better performance than the traditional method. It has no steady-state error, overcomes the problems caused by nonlinear discrete compensation, and can facilitate analysis in the frequency domain, realize parameter optimization, and improve calculation accuracy.

Author(s):  
Qijia Yao

Space manipulator is considered as one of the most promising technologies for future space activities owing to its important role in various on-orbit serving missions. In this study, a robust finite-time tracking control method is proposed for the rapid and accurate trajectory tracking control of an attitude-controlled free-flying space manipulator in the presence of parametric uncertainties and external disturbances. First, a baseline finite-time tracking controller is designed to track the desired position of the space manipulator based on the homogeneous method. Then, a finite-time disturbance observer is designed to accurately estimate the lumped uncertainties. Finally, a robust finite-time tracking controller is developed by integrating the baseline finite-time tracking controller with the finite-time disturbance observer. Rigorous theoretical analysis for the global finite-time stability of the whole closed-loop system is provided. The proposed robust finite-time tracking controller has a relatively simple structure and can guarantee the position and velocity tracking errors converge to zero in finite time even subject to lumped uncertainties. To the best of the authors’ knowledge, there are really limited existing controllers can achieve such excellent performance under the same conditions. Numerical simulations illustrate the effectiveness and superiority of the proposed control method.


2006 ◽  
Vol 128 (2) ◽  
pp. 377-387 ◽  
Author(s):  
Koudai Yoshizawa ◽  
Atsushi Teraji ◽  
Hiroshi Miyakubo ◽  
Koichi Yamaguchi ◽  
Tomonori Urushihara

In this research, combustion characteristics of gasoline compression ignition engines have been analyzed numerically and experimentally with the aim of expanding the high load operation limit. The mechanism limiting high load operation under homogeneous charge compression ignition (HCCI) combustion was clarified. It was confirmed that retarding the combustion timing from top dead center (TDC) is an effective way to prevent knocking. However, with retarded combustion, combustion timing is substantially influenced by cycle-to-cycle variation of in-cylinder conditions. Therefore, an ignition timing control method is required to achieve stable retarded combustion. Using numerical analysis, it was found that ignition timing control could be achieved by creating a fuel-rich zone at the center of the cylinder. The fuel-rich zone works as an ignition source to ignite the surrounding fuel-lean zone. In this way, combustion consists of two separate auto-ignitions and is thus called two-step combustion. In the simulation, the high load operation limit was expanded using two-step combustion. An engine system identical to a direct-injection gasoline (DIG) engine was then used to validate two-step combustion experimentally. An air-fuel distribution was created by splitting fuel injection into first and second injections. The spark plug was used to ignite the first combustion. This combustion process might better be called spark-ignited compression ignition combustion (SI-CI combustion). Using the spark plug, stable two-step combustion was achieved, thereby validating a means of expanding the operation limit of gasoline compression ignition engines toward a higher load range.


Author(s):  
Shinji Mitsuta ◽  
Hideki Tsuji ◽  
Hiroyuki Itoh ◽  
Yasushi Ogasawara ◽  
Kazuto Seto

Abstract The purpose of this study is to move a flexible structure, such as conveyance equipment that moves periodically, quickly and accurately by controlling its vibration. In order to reduce the vibration of a flexible structure actively, a hydraulic actuator is arranged on the motion transmission path between a drive system and a flexible structure. Generally, it is possible to obtain good effects for reducing a residual vibration by using feedback control. However, the vibration displacement in motion is mainly forced vibration which is caused by motion acceleration, so it is difficult to reduce the vibration displacement by using feedback control. Thus, by considering that the flexible structure is driven periodically, we use the repetitive control method to reduce the vibration displacement in motion. In this study, the repetitive control method with the step response, which does not need model identification, is shown. Furthermore, the validity of this method is examined by simulation and experiment.


2020 ◽  
Vol 10 (13) ◽  
pp. 4662 ◽  
Author(s):  
Minghui Zhao ◽  
Xiaobin Xu ◽  
Hao Yang ◽  
Zhijie Pan

A new proportional integral derivative (PID) control method is proposed for the 3D laser scanning system converted from 2D Lidar with a pitching motion device. It combines the advantages of a fuzzy algorithm, a radial basis function (RBF) neural network and a predictive algorithm to control the pitching motion of 2D Lidar quickly and accurately. The proposed method adopts the RBF neural network and feedback compensation to eliminate the unknown nonlinear part in the Lidar pitching motion, adaptively adjusting the PID parameter by a fuzzy algorithm. Then, the predictive control algorithm is adopted to optimize the overall controller output in real time. Finally, the simulation results show that the step response time of the Lidar pitching motion system using the control method is reduced from 15.298 s to 1.957 s with a steady-state error of 0.07°. Meanwhile, the system still has favorable response performance for the sinusoidal and step inputs under model mismatch and large disturbance. Therefore, the control method proposed above can improve the system performance and control the pitching motion of the 2D Lidar effectively.


Author(s):  
Sadanand Kulkarni ◽  
Soumendu Jana

High-speed rotating system development has drawn considerable attention of the researchers, in the recent past. Foil bearings are one of the major contenders for such applications, particularly for high speed and low load rotating systems. In foil bearings, process fluid or air is used as the working medium and no additional lubricant is required. It is known from the published literature that the load capacity of foil bearings depend on the operating speed, viscosity of the medium, clearance, and stiffness of the foil apart from the geometric dimensions of the bearing. In case of foil bearing with given dimensions, clearance governs the magnitude of pressure developed, whereas stiffness dictates the change in radial clearance under the generated pressure. This article deals with the effect of stiffness, clearance, and its interaction on the bump foil bearings load-carrying capacity. For this study, four sets of foil bearings of the same geometry with two levels of stiffness and clearance values are fabricated. Experiments are carried out following two factor-two level factorial design approach under constant load and in each case, the lift-off speed is measured. The experimental output is analyzed using statistical techniques to evaluate the influence of parameters under consideration. The results indicate that clearance has the maximum influence on the lift-off speed/ load-carrying capacity, followed by interaction effect and stiffness. A regression model is developed based on the experimental values and model is validated using error analysis technique.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yangshou Xiong ◽  
Kang Huang ◽  
Tao Wang ◽  
Qi Chen ◽  
Rui Xu

The development of technology requires higher load capacity, rotating speed, power-weight ratio, lower vibration, and noise with respect to the gear transmission. The new type microsegment gear’s tooth profile curve is composed of many microsegments. Previous researches indicate that the microsegment gear has a good static performance, while the dynamic behavior of the microsegment gear has never been investigated. This paper will focus on the dynamic performance of the gear. The profile deviation between microsegment gear and involute gear is regarded as a displacement excitation in the proposed dynamic model. The numerical analysis for three cases is conducted and the results shows that, in low-speed and heavy-load, medium-speed and medium-load conditions, microsegment gear and involute gear both exhibit a good performance, while, in high-speed and heavy-load condition, microsegment gear has a better performance than that of involute gear. The influence of backlash on the dynamic performance is also studied. It is found that the variation of backlash does not change the type of motion, but the vibration amplitude and the stability of the motion are much affected. The main idea in this paper is supposed to provide a novel method for the precision grinding of the microsegment gear.


1997 ◽  
Vol 119 (3) ◽  
pp. 388-392
Author(s):  
J. M. Pitarresi ◽  
K. A. Haller

Air layer supported bearing pads, or “air bearings” as they are commonly called, are popular because of their high load capacity and low in-plane coefficient of friction, making them well suited for supporting moving, high accuracy manufacturing stages. Air/vacuum bearings enhance these capabilities by giving the bearing pad load resistance capacity in both the upward and downward directions. Consequently, it is desirable to know how to model the air layer between the bearing pad and the bearing surface. In this paper, a simple finite element modeling approach is presented for investigating the vibrational characteristics of an air layer supported bearing. It was found that by modeling the air layer as a bed of uniform springs who’s stiffness is determined by load-displacement tests of the bearing, a reasonable representation of the response can be obtained. For a bearing supported by air without vacuum, the dynamic response was very similar to that of a freely supported bearing. The addition of vacuum to an air bearing was found to significantly lower its fundamental frequency which could lead to unwanted resonance problems.


Sign in / Sign up

Export Citation Format

Share Document