scholarly journals Hydraulic fracture in the nonlinear stress field

Author(s):  
Mirenkov Valerii

Introduction. The article considers a variant of a straight finite fracture modeled by a mathematical cut in the elastic plane. Aim. The new model proposed differs from the existing models by the damage zone bounded by the elastic material at the fracture tip up to the moment of the fracture growth. The process of fracturing is essentially nonlinear. Methodology. The model is based on the full-scale tension experiments with a reference sample of rocks enclosing a fracture and having the characteristic stress points, namely, proportionality limit, elasticity limit, plasticity domain and the domain in the vicinity of destructive stresses. Results. The problem with fracture is considered as an experiment to determine deformation with growing pressure in the fracture. The problem has no correct analytical solution. The problem on hydrofracture 20 "Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal". No. 4. 2020 ISSN 0536-1028 assumes the presence of the initial stress field in rock mass, which is essentially used in formulation of boundary conditions. Conclusions. All such problems belong to the class of Cauchy’s problems with an infinitely distant point in the computational domain. This article proposes the correct formulation of the fracture theory problem in the static, kinematic and dynamic framework.

2011 ◽  
Vol 243-249 ◽  
pp. 3223-3228
Author(s):  
Zhong Fu Wang ◽  
Han Dong Liu ◽  
Tong Jiang ◽  
Si Wei Wan

Based on geological condition of underground factory building in Hohhot pumped storage power station, research and analysis are taken for the fundamental element which affect initial stress field, 3D finite element model of underground factory building is build for the analysis. Beigin with regrssion analysis, adopt linear elasticity caculation of finite element method to take linear regression analysis, and obtain range of optimized parameters. Adopt homogeneous design to definite various assemblies of optimized parameters at different levels. Obtain training sample by elasto plastic caculation of finite element, train for RBF model in oder to get inverse model of ground stress field. The calculation result shown that: RBF model overcome the disadvantages such as slow calculating speed and overfitting of BP model, and it could obtain distrubution rule of initial stress filed by inverse analysis in a reasonable way.


2020 ◽  
Vol 91 (2A) ◽  
pp. 891-900
Author(s):  
Yan Xu ◽  
Keith D. Koper ◽  
Relu Burlacu ◽  
Robert B. Herrmann ◽  
Dan-Ning Li

Abstract Because of the collision of the Indian and Eurasian tectonic plates, the Yunnan Province of southwestern China has some of the highest levels of seismic hazard in the world. In such a region, a catalog of moment tensors is important for estimating seismic hazard and helping understand the regional seismotectonics. Here, we present a new uniform catalog of moment tensor solutions for the Yunnan region. Using a grid-search technique to invert seismic waveforms recorded by the permanent regional network in Yunnan and the 2 yr ChinArray deployment, we present 1833 moment tensor solutions for small-to-moderate earthquakes that occurred between January 2000 and December 2014. Moment magnitudes in the new catalog vary from Mw 2.2 to 6.1, and the catalog is complete above Mw∼3.5–3.6. The moment tensors are constrained to be purely double-couple and show a variety of faulting mechanisms. Normal faulting events are mainly concentrated in northwest Yunnan, while farther south along the Sagaing fault the earthquakes are mostly thrust and strike slip. The remaining area includes all three styles of faulting but mostly strike slip. We invert the moment tensors for the regional stress field and find a strong correlation between spatially varying maximum horizontal stress and Global Positioning System observations of horizontal ground velocity. The stress field reveals clockwise rotation around the eastern Himalayan syntaxis, with northwest–southeast compression to the east of the Red River fault changing to northeast–southwest compression west of the fault. Almost 88% of the centroid depths are shallower than 16 km, consistent with a weak and ductile lower crust.


2019 ◽  
Vol 132 (5-6) ◽  
pp. 1183-1200 ◽  
Author(s):  
Mattia Pizzati ◽  
Fabrizio Balsamo ◽  
Fabrizio Storti ◽  
Paola Iacumin

Abstract In this work, we report the results of a multidisciplinary study describing the structural architecture and diagenetic evolution of the Rocca di Neto extensional fault zone developed in poorly lithified sandstones of the Crotone Basin, Southern Italy. The studied fault zone has an estimated displacement of ∼90 m and consists of: (1) a low-deformation zone with subsidiary faults and widely spaced deformation bands; (2) an ∼10-m-wide damage zone, characterized by a dense network of conjugate deformation bands; (3) an ∼3-m-wide mixed zone produced by tectonic mixing of sediments with different grain size; (4) an ∼1-m-wide fault core with bedding transposed into foliation and ultra-comminute black gouge layers. Microstructural investigations indicate that particulate flow was the dominant early-stage deformation mechanism, while cataclasis became predominant after porosity loss, shallow burial, and selective calcite cementation. The combination of tectonic compaction and preferential cementation led to a strain-hardening behavior inducing the formation of “inclined conjugate deformation band sets” inside the damage zone, caused by the kinematic stress field associated with fault activity. Conversely, conjugate deformation band sets with a vertical bisector formed outside the damage zone in response to the regional extensional stress field. Stable isotope analysis helped in constraining the diagenetic environment of deformation, which is characterized by mixed marine-meteoric signature for cements hosted inside the damage zone, while it progressively becomes more meteoric moving outside the fault zone. This evidence supports the outward propagation of fault-related deformation structures in the footwall damage zone.


2010 ◽  
Vol 160-162 ◽  
pp. 1704-1711
Author(s):  
Yu Wei Zhang ◽  
Qing Guo Yang ◽  
Zhi Zhong Tu

For the interface end formed after paving asphalt overlay on cement concrete pavement, the stress field of interface end is very important for both structural analysis and interface design when the temperature drops. The stress field of interface end can be gotten with the crack-tip field theory that consider displacement continuation and stress equality on each side of interface, but it needs further verification to prove whether the initial stress field can satisfy far field boundary condition when temperature dropping. In conditions of different material properties, different plane dimension and different thickness of asphalt overlay the stress field is calculated with the finite element method (FEM), and the results show that the forms of theoretical solution can exactly describe stress field of the interface end when temperature dropping. The stress field of interface end indicates that when the elastic modulus of asphalt overlay becomes lager, the stress singularity’s degree of interface end will reduce. As for the interface end formed after paving asphalt concrete overlay on the concrete pavement, improving the elastic modulus of asphalt overlay is beneficial.


2016 ◽  
Vol 9 (1) ◽  
pp. 161-162
Author(s):  
V. Basile ◽  
◽  
M. G. Iannace ◽  
A. Quartuccio ◽  
◽  
...  

Objective: Actually, sexual pain disorders could be interpreted in a much broader sense to include also non-coital sex disorders (for example clitoris pain or vulvar vestibulis pain during petting). The Vulvar Vestibulitis (VV) sums up the complexity of interacting values in the genesis of pain. The VV is a clinical disorder characterized by three symptoms for excellence: 1) Acute vestibule pain at any attempt of penetration; 2) Tenderness caused by pressure in the vaginal vestibule: if we consider the entrance to the vaginal orifice as a clock face, the pain is at its greatest in the 5 and 7 areas; 3) Erythema of various degrees in the vaginal vestibule. Design and Method: Vulvar vestibulitis as a multi system disorder involves the mucosa of the vaginal vestibule and can become home to an intense inflammatory response; it also involves the immune system with the proliferation of painful nerve endings, the nervous system, the muscular and vascular system. Symptoms associated with VV can be of a urinary nature, with an urgent need to urinate after intercourse, or chronic cystitis or the onset of pain with the same characteristics as dyspareunia during a gynecological examination and so on. Results: In an outpatients setting which differs from the usual psychological/gynecological one, the presence of two specialists, that is a psychologist and a gynecologist at the gynecological examination may help. During the checkup when the speculum is inserted into the vagina to get a direct observation of the structure of the vagina, any lesions caused by chronic inflammation of the vaginal vestibule can be highlighted. The psychologist on the other side of the bed keeping direct eye contact with the patient can help her to manage the anxiety or pain linked to the moment of finger penetration or with the use of diagnostic instruments, as well as breathing management through autogenic training which will lower any anxiety-related situations. Eye contact can also keep the patient anchored to the real situation and keep her in touch with reality which can easily be distorted in a panic situation. Conclusions: In these conditions the gynecologist can carry out his examination, with penetration for example giving the patient a direct experience of it which in turn can act as a positive feedback for future experience. The use of Visnadina (Refeel Spray) is particularly useful for patients who suffer generally from painful sex and sexual arousal disorders. Refeel Spray was the product used as the reference sample in these cases.


Author(s):  
H.-B. Liu ◽  
Y.-P. Li ◽  
Y.-Q. Wang ◽  
X.-J. Sheng

To characterize the residual stress distribution is very crucial for workpiece fatigue lifetime and structural integrity assessment. An energy-based residual stress field reconstruction approach using limited measurements is proposed. Firstly, the Ferguson spline interpolation technique is employed as the stress interpolation base of the 2-order stress tensor. Then, an initial stress field can be reconstructed using the overall boundary conditions by minimizing strain energy. Further, the stress distribution is modified according to strain compatibility equation. At last, a typical stress unit from the artificial stress field constructed by FEM, was picked up as an input set to verify the validation of the developed model and algorithm numerically. It was demonstrated that the energy-based scheme was efficient and reliable to reconstruct the residual stress field from limited measurements.


2020 ◽  
Author(s):  
Simon Preuss ◽  
Jean Paul Ampuero ◽  
Luca Dal Zilio ◽  
Taras Gerya ◽  
Ylona van Dinther

<p>Natural fault networks are geometrically complex systems that evolve through time. The growth and evolution of faults and their off-fault damage pattern are influenced by both dynamic earthquake ruptures and aseismic deformation during the interseismic period. To better understand each of their contributions to faulting we simulate both earthquake rupture dynamics and long-term deformation in a visco-elasto-plastic crust subjected to rate-and-state-dependent friction [1,2]. The continuum mechanics-based numerical model presented here includes three new features. First, a 2.5-D approximation to incorporate effects of a viscoelastic lower crustal substrate below a finite depth. Second, we introduce a dynamically adaptive (slip-velocity-dependent) measure of fault width to ensure grid size convergence of fault angles for evolving faults. Third, fault localisation is facilitated by plastic strain weakening of bulk rate-and-state friction parameters as motivated by laboratory experiments. This allows us to for the first time simulate sequences of episodic fault growth due to earthquakes and aseismic creep. Localized fault growth is simulated for four bulk rheologies ranging from persistent velocity-weakening to velocity-strengthening. Yet, episodic fault growth is only obtained for a bulk rheology that transitions from velocity-strengthening friction to velocity-weakening friction. Interestingly, in each of these bulk rheologies, faults predominantly localise [LDZ1] and grow in the inter-seismic period due to aseismic deformation. However, [LDZ2] off-fault deformation - both distributed and localised - is typically formed during dynamic earthquake ruptures. Simulated off-fault deformation structures range from fan-shaped distributed deformation to localized Riedel splay faults and antithetic conjugate [LDZ3] Riedel shear faults [LDZ4] and towards wing cracks. We observe that the fault-normal width of the outer damage zone saturates with increasing fault length due to the finite depth of the seismogenic zone. We also observe that dynamically and statically evolving stress fields from neighbouring fault strands affects first and secondary fault growth. Finally, we find that the amount of off-fault deformation distinctly depends on the degree of optimality of a fault with respect to the prevailing but dynamically changing stress field. Typically, we simulate off-fault deformation on faults parallel to the loading direction. This produces a 6.5-fold higher off-fault energy dissipation than on an optimally oriented fault, which in turn has a 1.5-fold larger stress drop. The misalignment of the fault with respect to the static stress field thus facilitates off-fault deformation. These results imply that fault geometries bend [2], individual fault strands interact and that optimal orientations and off-fault deformation vary through space and time. With our work we establish the basis for simulations and analyses of complex evolving fault networks subject to both long-term and short-term dynamics. Currently, we are using this basis to simulate and explain orthogonal faulting observed in the 2019 M6.4-M7.1 Ridgecrest earthquake sequence.</p>


2006 ◽  
Vol 3-4 ◽  
pp. 243-252 ◽  
Author(s):  
M. Chabaat ◽  
S. Djouder ◽  
M. Touati

In this study, interaction of a main crack with its surrounding damage, which consists of continuous lines of discontinuities, is analysed. To solve this complex problem, a Semi-Empirical Approach (SEA), which relies on experimentally measured crack opening displacements as the solution to this multiple crack interaction problem is suggested. The solution procedure is illustrated, first, for a particular case of the interaction of an array of horizontal and vertical crazes with a main crack, and second, for the generalized case to include the whole damage of crazing patterns surrounding the main crack. The results show that the crack Damage Zone (DZ) or the socalled Process Zone (PZ) interaction may either amplify or suppress the resulting stress field depending on the crack damage configuration. Green’s function for the Stress Intensity Factor (SIF) is employed to quantify the effects on a crack of the damage of continuous patterns of discontinuities. It follows from the analysis that an increase in the number of crazing patterns will amplify the stress at the main crack. It is also shown throughout this study that the overall effect of the damage is identified, as being an amplifying one and that the resulting local stress field would direct the propagation of the main crack since there is no toughening.


Sign in / Sign up

Export Citation Format

Share Document