scholarly journals Effect of Cooling Rate on the Microstructure Evolution and Mechanical Properties of Iron-Rich Al–Si Alloy

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 411
Author(s):  
Xiao Shen ◽  
Shuiqing Liu ◽  
Xin Wang ◽  
Chunxiang Cui ◽  
Pan Gong ◽  
...  

The mechanical properties of iron-rich Al–Si alloy is limited by the existence of plenty of the iron-rich phase (β-Al5FeSi), whose unfavorable morphology not only splits the matrix but also causes both stress concentration and interface mismatch with the Al matrix. The effect of the cooling rate on the tensile properties of Fe-rich Al–Si alloy was studied by the melt spinning method at different rotating speeds. At the traditional casting cooling rate of ~10 K/s, the size of the needle-like β-Al5FeSi phase is about 80 μm. In contrast, the size of the β-Al5FeSi phase is reduced to 500 nm and the morphology changes to a granular morphology with the high cooling rate of ~104 K/s. With the increase of the cooling rate, the morphology of the β-Al5FeSi phase is optimized, meanwhile the tensile properties of Fe-rich Al–Si alloy are greatly improved. The improved tensile properties of the Fe-rich Al-Si alloy is attributed to the combination of Fe-rich reinforced particles and the granular silicon phase provided by the high cooling rate of the melt spinning method.

2018 ◽  
Vol 225 ◽  
pp. 03007
Author(s):  
Balaji Bakthavatchalam ◽  
Khairul Habib ◽  
Namdev Patil ◽  
Omar A Hussein

Microstructural Analysis plays an important role in enhancing the mechanical properties of metals and composites. Usually Aluminium Silicon Carbide (Al6063/SiC) alloys are mixed with strontium, sodium and antimony for high durability even though they are toxic and costly. As an alternative calcium is used as an alloying element to improve the mechanical property of Al6063/Sic alloy. In this paper Al6063 is chosen as the matrix material while Sic is used as a reinforcement where calcium powder is added to modify the silicon phase of the composite. Finally, concentration of Silicon carbide is varied from 0 to 150 mg to produce four specimens of Al6063 alloy and it is subjected to microstructure analysis which showed the reduction of grain size and therefore improvement in the hardness from 52.9 HV to 58.4 HV and decrease in the wear loss from 3.97 to 3.27 percentage.


2021 ◽  
Vol 1023 ◽  
pp. 45-52
Author(s):  
Xiao Yan Wang ◽  
Meng Li ◽  
Zhi Xun Wen

After solid solution treatment at 1335°C for 4 hours and cooling to room temperature at different rate, the nickel-based single crystal superalloy were made into three kinds of nickel-based single crystal superalloy materials containing different size γ′ phases, respectively. The tensile test of I-shaped specimens was carried out at 980°C, and their effect of γ′ phase microstructure on the tensile properties was studied. The results show that the yielding strength of the material air-cooled to room temperature was lower than that with cooling rate at 0.15°C/s, but both of them were lower than the yielding strength of original material. Little difference was found on the elastic modulus of I-shaped specimens made of three kinds of materials. When the cubic degree of the γ′ phase is higher and the size is larger, the tensile properties of the material is better, which can be attributed to the larger size and narrower channel of the matrix phase that lead to higher dislocation resistance.


2005 ◽  
Vol 13 (2) ◽  
pp. 139-150 ◽  
Author(s):  
Zhanpai Su ◽  
Pingkai Jiang ◽  
Qiang Li ◽  
Ping Wei ◽  
Yong Zhang

The flame retardant and mechanical properties of polypropylene (PP), highly filled with aluminum hydroxide (Al(OH)3) and toughened with ethylene propylene diene monomer (EPDM) and zinc neutralized sulfated EPDM ionomer (Zn-S-EPDM), were studied along with their morphology. The PP matrix when highly filled with Al(OH)3 particles can achieve an adequate level of flame retardancy, but there is a decrease in the mechanical properties because of inadequate adhesion between the Al(OH)3 particles and the PP matrix and the strong tendency of the filler to agglomerate. The rubber incorporated in the PP/Al(OH)3 composites has two roles: as compatibilizer and toughening agent. Although ordinary EPDM significantly improves the Izod impact strength of the composites, the tensile properties are much worse because of the weak interfacial adhesion between the modifier and the matrix. Using Zn-S-EPDM instead EPDM, the tensile properties are much improved with only a slight decrease in toughness, because of improvements in the interfacial adhesion between modifier and matrix. SEM micrographs show that the rubber phase is dispersed in the continuous PP matrix and that most Al(OH)3 particles are uniformly distributed in the rubbery phase. Larger, obviously rubbery, domains can be seen in the PP/EPDM/Al(OH)3 ternary composites. Much finer rubbery domains were found in the PP/Zn-S-EPDM/Al(OH)3 composites.


2019 ◽  
Vol 130 ◽  
pp. 01040 ◽  
Author(s):  
Yuniar Ratna Pratiwi ◽  
Indah Widiastuti ◽  
Budi Harjanto

The aim of this article is to evaluate water absorption in bamboo fiber composites. Bamboo is hydrophilic, means that it easily absorbs water. In this study the bamboo fiber-based composites were developed using hand lay up method, with epoxy resin as the matrix constituent. Water absorption characteristics of specimens of bamboo composite and epoxy were determined from water immersion tests at several temperatures. Gravimetric analysis was performed to determine the moisure absorbed as a function of time at two different temperatures: 25 ºC and 50 C. The diffusivity of water in an epoxy bamboo composite was determined after reaching saturation point. During room temperature soaking, epoxy specimen showed the characteristic of Fickian behavior. Similar immersion tests on bamboo-epoxy composites followed nonfickian behavior. Changes in the mechanical properties of material due to water absorption were evaluated from tensile testing on materials with varied water content. It was found that the waterabsorption in all samples reduced the tensile properties. The degradation of tensile properties was greater with an increasing temperature of immersion. The results of this study emphasize the importance ofconsidering deterioration of mechanical properties in the bamboo epoxy composites during their application in water and possibly in humid environment.


2016 ◽  
Vol 51 (3) ◽  
pp. 395-404 ◽  
Author(s):  
Sinan Kandemir

In this work, A357/0.5 wt.% SiC nanocomposites were fabricated with a combination of ultrasonic processing and a nanoparticle feeding mechanism that involves the introduction of a closed end aluminium tube filled with the ball-milled SiC nanoparticles (20–30 nm) and aluminium powders (<75 µm) into the melt for complete deagglomeration and uniform dispersion of nanoparticles through the matrix. The microstructural and mechanical properties of the fabricated nanocomposites were investigated. The microstructural studies conducted with optical and advanced electron microscopes indicate that relatively effective deagglomeration and uniform dispersion of SiC nanoparticles into the molten alloy were achieved. The hardness and tensile properties of the nanocomposites were notably improved compared to those of the ultrasonically processed A357 alloy without reinforcement, showing the strengthening potency of nanoparticles and the good bonding obtained at the particle-reinforcement interface.


2014 ◽  
Vol 794-796 ◽  
pp. 39-44 ◽  
Author(s):  
Astrid Marie Flattum Muggerud ◽  
Yan Jun Li ◽  
Randi Holmestad

Dispersoids are important in 3xxx Al alloys, influencing mechanical properties, texture and recrystallization. In this work α-Al (Fe,Mn)Si dispersoids have been studied after low temperature homogenisation. The common orientation relationship between dispersoids and Al matrix has been reported in earlier studies. Here a systematic study on the orientation relationship and its exceptions is presented. It is found that most of the dispersoids follow the common orientation relationship, [1-1 1] α //[1-1 1]Al , (5-2 -7 ) α //(0 1 1)Al . Here the dispersoids are semi coherent with the Aluminum matrix. Different morphologies and habit planes are possible. Deviations from the most commonly observed orientation relationships are presented and discussed, to underline the complexity of the phase and its relation to the matrix.


1996 ◽  
Vol 459 ◽  
Author(s):  
J. H. Lee ◽  
K. Hamada ◽  
K. Miziuuchia ◽  
M. Taya ◽  
K. Inoue

ABSTRACT6061 Al-matrix composite with TiNi shape memory fiber as reinforcement has been fabricated by vacuum hot pressing to investigate the microstructure and mechanical properties. The yield stress of this composite increases with increasing amount of prestrain, and it also depends on the volume fraction of fiber and heat treatment. The smartness of the composite is given due to the shape memory effect of the TiNi fiber which generates compressive residual stresses in the matrix material when heated after being prestrained. Microstructual observations have revealed that interfacial reactions occur between the matrix and fiber, creating two intermetallic layers. The flow strength of the composite at elevated temperatures is significantly higher than that of the matrix alloy without TiNi fiber.


2007 ◽  
Vol 546-549 ◽  
pp. 499-502
Author(s):  
X. Qiu ◽  
Xiao Jun Wang ◽  
Ming Yi Zheng ◽  
Kun Wu

The fabrication processing, mechanical properties and fracture characters of SiCp/AZ91 magnesium matrix composites fabricated by squeeze casting were investigated. The SiC particles with different diameters (5μm, 20μm and 50μm) were employed as the reinforcement in the composites, the volume fraction of them was 50% in all cases. Experimental results showed that when the size of SiC particle decreased, the tensile properties of the composite increased. The tensile properties of SiCp/AZ91 composite with small particles are controlled by the properties of matrix alloy and the strength of the interface between the matrix and reinforcements, but the composites reinforced by large particles are controlled by the fracture of the particles.


1998 ◽  
Vol 13 (2) ◽  
pp. 308-315 ◽  
Author(s):  
H. W. Sheng ◽  
F. Zhou ◽  
Z. Q .Hu ◽  
K. Lu

Two nonequilibrium processes (melt-spinning and ball-milling) were successfully employed to synthesize Al1−xPbx (x = 5, 10, 20, 30 wt. %) nanocomposites with distinct microstructures. In the melt-spun (MS) Al–Pb alloys, the nanometer-sized Pb particles are uniformly distributed in the micrometer-grained Al matrix and have an orientational relationship with the matrix, while in the ball-milled (BM) samples, both Pb and Al components are refined with prolonged milling time, forming nanocomposites with Pb particles homogeneously dispersed into the Al matrix. The minimum particle size of Pb in the milled samples linearly increases with the Pb content. The microhardness of the BM Al–Pb samples is much larger than that of the MS samples, which mainly results from strengthening effects of the nanometer scale Al grains following the Hall–Petch relationship. The microhardness for both BM and MS Al–Pb samples varies with the Pb content, and maximum hardness for both samples exists when Pb content is about 5 wt. %, indicating that small amounts of Pb, in the form of nanoparticles, may strengthen the Al matrix.


2011 ◽  
Vol 228-229 ◽  
pp. 101-105
Author(s):  
Zhi Ming Zhou ◽  
Li Wen Tang ◽  
Jing Luo ◽  
Tao Zhou ◽  
Jie Zhan ◽  
...  

Behavior of Cr-rich phase in rapid solidification Cu71Cr29 alloys was investigated by using melt spinning and splat quenching. The microstructure and solidification behavior of the Cr-rich were investigated by scanning electron microscopy (SEM). The results showed that the alloys generally have a microstructure consisting of a fine dispersion of a Cr-rich phase in a Cu-rich matrix. However, the morphology and size of the Cr-rich phase vary greatly with the cooling rate. On the one hand, the average size of the Cr-rich phase is reduced with increasing cooling rate. On the other hand, the Cr-rich phase show both dendrites and spheroids for lower cooling rate but only spheroids for the higher cooling rate. This means liquid phase separation occurred during rapid solidification. The results were discussed with respect to the formation of the Cr-rich spheroids during rapid solidification.


Sign in / Sign up

Export Citation Format

Share Document