Fiber extrusion melt-spinning

2022 ◽  
pp. 29-65
Author(s):  
Mukesh Kumar Singh ◽  
Annika Singh
Keyword(s):  
Author(s):  
Raja K. Mishra

The discovery of a new class of permanent magnets based on Nd2Fe14B phase in the last decade has led to intense research and development efforts aimed at commercial exploitation of the new alloy. The material can be prepared either by rapid solidification or by powder metallurgy techniques and the resulting microstructures are very different. This paper details the microstructure of Nd-Fe-B magnets produced by melt-spinning.In melt spinning, quench rate can be varied easily by changing the rate of rotation of the quench wheel. There is an optimum quench rate when the material shows maximum magnetic hardening. For faster or slower quench rates, both coercivity and maximum energy product of the material fall off. These results can be directly related to the changes in the microstructure of the melt-spun ribbon as a function of quench rate. Figure 1 shows the microstructure of (a) an overquenched and (b) an optimally quenched ribbon. In Fig. 1(a), the material is nearly amorphous, with small nuclei of Nd2Fe14B grains visible and in Fig. 1(b) the microstructure consists of equiaxed Nd2Fe14B grains surrounded by a thin noncrystalline Nd-rich phase. Fig. 1(c) shows an annular dark field image of the intergranular phase. Nd enrichment in this phase is shown in the EDX spectra in Fig. 2.


Author(s):  
S. Hagège ◽  
U. Dahmen ◽  
E. Johnson ◽  
A. Johansen ◽  
V.S. Tuboltsev

Small particles of a low-melting phase embedded in a solid matrix with a higher melting point offer the possibility of studying the mechanisms of melting and solidification directly by in-situ observation in a transmission electron microscope. Previous studies of Pb, Cd and other low-melting inclusions embedded in an Al matrix have shown well-defined orientation relationships, strongly faceted shapes, and an unusual size-dependent superheating before melting.[e.g. 1,2].In the present study we have examined the shapes and thermal behavior of eutectic Pb-Cd inclusions in Al. Pb and Cd form a simple eutectic system with each other, but both elements are insoluble in solid Al. Ternary alloys of Al (Pb,Cd) were prepared from high purity elements by melt spinning or by sequential ion implantation of the two alloying additions to achieve a total alloying addition of up to lat%. TEM observations were made using a heating stage in a 200kV electron microscope equipped with a video system for recording dynamic behavior.


Author(s):  
H.-J. Cantow ◽  
M. Kunz ◽  
M. Möller

In transmission electron microscopy the natural contrast of polymers is very low. Thus the contrast has to be enhanced by staining with heavy metals. The resolution is limited by the size of the staining particles and by the fact that electrons with different energy are focused in different image planes due to the chromatic aberration of the magnetic lenses. The integration of an electron energy loss spectrometer into the optical coloumn of a transmission electron microscope offers the possibility to use monoenergetic electrons and to select electrons with a certain energy for imaging. Thus contrast and resolution are enhanced. By imaging only electrons with an element specific energy loss the element distribution in the sample can be obtained. In addition, elastic bright field images and diffraction patterns yield excellent resolution. Some applications of the method on multicomponent polymer materials are discussed.Bulk polymer samples were prepared by ultramicrotoming at room temperature or well below the glass transition temperature. Very thin films for the direct observation of the structure in semicrystalline polymers were obtained by melt-spinning. Specimens were examined with a ZEISS CEM 902 operated at 80 kV.


2016 ◽  
pp. 3287-3297
Author(s):  
Tarek El Ashram ◽  
Ana P. Carapeto ◽  
Ana M. Botelho do Rego

Tin-bismuth alloy ribbons were produced using melt-spinning technique. The two main surfaces (in contact with the rotating wheel and exposed to the air) were characterized with Optical Microscopy and AFM, revealing that the surface exposed to the air is duller (due to a long-range heterogeneity) than the opposite surface. Also the XPS chemical composition revealed many differences between them both on the corrosion extension and on the total relative amounts of tin and bismuth. For instance, for the specific case of an alloy with a composition Bi-4 wt % Sn, the XPS atomic ratios Sn/Bi are 1.1 and 3.7 for the surface in contact with the rotating wheel and for the one exposed to air, respectively, showing, additionally, that a large segregation of tin at the surface exists (nominal ratio should be 0.073). This segregation was interpreted as the result of the electrochemical process yielding the corrosion products.


2015 ◽  
Vol 10 (2) ◽  
pp. 2663-2681
Author(s):  
Rizk El- Sayed ◽  
Mustafa Kamal ◽  
Abu-Bakr El-Bediwi ◽  
Qutaiba Rasheed Solaiman

The structure of a series of AlSb alloys prepared by melt spinning have been studied in the as melt–spun ribbons  as a function of antimony content .The stability  of these structures has  been  related to that of the transport and mechanical properties of the alloy ribbons. Microstructural analysis was performed and it was found that only Al and AlSb phases formed for different composition.  The electrical, thermal and the stability of the mechanical properties are related indirectly through the influence of the antimony content. The results are interpreted in terms of the phase change occurring to alloy system. Electrical resistivity, thermal conductivity, elastic moduli and the values of microhardness are found to be more sensitive than the internal friction to the phase changes. 


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1134
Author(s):  
Bo Seok Song ◽  
Jun Young Lee ◽  
Sun Hwa Jang ◽  
Wan-Gyu Hahm

High-speed melt spinning of thermotropic liquid crystalline polymer (TLCP) resin composed of 4-hydroxybenzoic acid (HBA) and 2-hydroxy-6-napthoic acid (HNA) monomers in a molar ratio of 73/27 was conducted to investigate the characteristic structure development of the fibers under industrial spinning conditions, and the obtained as-spun TLCP fibers were analyzed in detail. The tensile strength and modulus of the fibers increased with shear rate in nozzle hole, draft in spin-line and spinning temperature and exhibited the high values of approximately 1.1 and 63 GPa, respectively, comparable to those of industrial as-spun TLCP fibers, at a shear rate of 70,000 s−1 and a draft of 25. X-ray diffraction demonstrated that the mechanical properties of the fibers increased with the crystalline orientation factor (fc) and the fractions of highly oriented crystalline and non-crystalline anisotropic phases. The results of structure analysis indicated that a characteristic skin–core structure developed at high drafts (i.e., spinning velocity) and low spinning temperatures, which contributed to weakening the mechanical properties of the TLCP fibers. It is supposed that this heterogeneous structure in the cross-section of the fibers was induced by differences in the cooling rates of the skin and core of the fiber in the spin-line.


Author(s):  
Sidra Nasir ◽  
Amjad Hussain ◽  
Nasir Abbas ◽  
Nadeem Irfan Bukhari ◽  
Fahad Hussain ◽  
...  
Keyword(s):  
Class Ii ◽  

Sign in / Sign up

Export Citation Format

Share Document