scholarly journals Estimation of Phase Noise Transfer Function

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8234
Author(s):  
Igor Rutkowski ◽  
Krzysztof Czuba

Quantifying frequency converters’ residual phase noise is essential in various applications, including radar systems, high-speed digital communication, or particle accelerators. Multi-input signal source analyzers can perform such measurements out of the box, but the high cost limits their accessibility. Based on an analysis of phase noise transmission theory and the capabilities of popular instrumentation, we propose a technique extending the functionality of single-input devices. The method supplements absolute noise measurements with estimates of the phase noise transfer function (also called the jitter transfer function), allowing the calculation of residual noise. The details of the hardware setup used for the method verification are presented. The injection of single-tone and pseudo-random modulations to the test signal is examined. Optional employment of a spectrum analyzer can reduce the time and number of data needed for characterization. A wideband synthesizer with an integrated voltage-controlled oscillator was investigated using the method. The estimated transfer function matches a white-box model based on synthesizer’s structure and values of loop components. The first results confirm the validity of the proposed technique.

2007 ◽  
Vol 15 (14) ◽  
pp. 9090 ◽  
Author(s):  
Ryan P. Scott ◽  
Theresa D. Mulder ◽  
Katherine A. Baker ◽  
Brian H. Kolner

Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 316
Author(s):  
Cheol-Woo Kang ◽  
Hyunwon Moon ◽  
Jong-Ryul Yang

A voltage-controlled oscillator (VCO) is a key component to generate high-speed clock of mixed-mode circuits and local oscillation signals of the frequency conversion in wired and wireless application systems. In particular, the recent evolution of new high-speed wireless systems in the millimeter-wave frequency band calls for the implementation of the VCO with high oscillation frequency and low close-in phase noise. The effect of the flicker noise on the phase noise of the VCO should be minimized because the flicker noise dramatically increases as the deep-submicron complementary metal-oxide-semiconductor (CMOS) process is scaled down, and the flicker corner frequency also increases, up to several MHz, in the up-to-date CMOS process. The flicker noise induced by the current source is a major factor affecting the phase noise of the VCO. Switched-biasing techniques have been proposed to minimize the effect of the flicker noise at the output of the VCO with biasing AC-coupled signals at the current source of the VCO. Reviewing the advantages and disadvantages reported in the previous studies, it is analyzed which topology to implement the switched-biasing technique is advantageous for improving the performance of the CMOS VCOs.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yafeng Ren ◽  
Shan Chang ◽  
Geng Liu ◽  
Haiwei Wang ◽  
Xueliang Bao

To investigate the gearbox radiation noise properties under various rotational speeds, a noise prediction method based on impedance model and noise transfer function (NTF) is proposed. One only needs to extract the NTF of the housing once rapid gearbox noise prediction under different working conditions is realized. Taking a flexible supported gearbox as a research object, the external excitation of the housing (the bearing excitation load and isolator excitation load) is calculated through a gear-housing-foundation-coupled impedance model, and the noise transfer function is simulated through the vibroacoustic-coupled boundary element model; then the radiation noise is obtained. Based on this model, the noise transfer analysis of the housing is carried out, different excitation components and NTF components are compared, and the contributions of different excitation components to noise are compared. Results show that the radiation noise of gearbox is mainly excited by the high-speed bearing, while the low-speed bearing and isolator have little influence on noise. At low speed, vertical force, axial force, and moment excitation of bearings all contribute to the radiation noise while at high speed, the gearbox radiation noise is mainly generated by vertical excitation force of bearings.


Author(s):  
Shitesh Tiwari ◽  
Sumant Katiyal ◽  
Parag Parandkar

Voltage Controlled Oscillator (VCO) is an integral component of most of the receivers such as GSM, GPS etc. As name indicates, oscillation is controlled by varying the voltage at the capacitor of LC tank. By varying the voltage, VCO can generate variable frequency of oscillation. Different VCO Parameters are contrasted on the basis of phase noise, tuning range, power consumption and FOM. Out of these phase noise is dependent on quality factor, power consumption, oscillation frequency and current. So, design of LC VCO at low power, low phase noise can be obtained with low bias current at low voltage.  Nanosize transistors are also contributes towards low phase noise. This paper demonstrates the design of low phase noise LC VCO with 4.89 GHz tuning range from 7.33-11.22 GHz with center frequency at 7 GHz. The design uses 32nm technology with tuning voltage of 0-1.2 V. A very effective Phase noise of -114 dBc / Hz is obtained with FOM of -181 dBc/Hz. The proposed work has been compared with five peer LC VCO designs working at higher feature sizes and outcome of this performance comparison dictates that the proposed work working at better 32 nm technology outperformed amongst others in terms of achieving low Tuning voltage and moderate FoM, overshadowed by a little expense of power dissipation. 


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1873
Author(s):  
Chen Cai ◽  
Xuqiang Zheng ◽  
Yong Chen ◽  
Danyu Wu ◽  
Jian Luan ◽  
...  

This paper presents a fully integrated physical layer (PHY) transmitter (TX) suiting for multiple industrial protocols and compatible with different protocol versions. Targeting a wide operating range, the LC-based phase-locked loop (PLL) with a dual voltage-controlled oscillator (VCO) was integrated to provide the low jitter clock. Each lane with a configurable serialization scheme was adapted to adjust the data rate flexibly. To achieve high-speed data transmission, several bandwidth-extended techniques were introduced, and an optimized output driver with a 3-tap feed-forward equalizer (FFE) was proposed to accomplish high-quality data transmission and equalization. The TX prototype was fabricated in a 28-nm CMOS process, and a single-lane TX only occupied an active area of 0.048 mm2. The shared PLL and clock distribution circuits occupied an area of 0.54 mm2. The proposed PLL can support a tuning range that covers 6.2 to 16 GHz. Each lane's data rate ranged from 1.55 to 32 Gb/s, and the energy efficiency is 1.89 pJ/bit/lane at a 32-Gb/s data rate and can tune an equalization up to 10 dB.


Sign in / Sign up

Export Citation Format

Share Document