What determines the position of the transition zone between alpha and beta regions in the ocean? A model study.

Author(s):  
Romain Caneill ◽  
Fabien Roquet ◽  
Gurvan Madec ◽  
Jonas Nycander

<p>The stratification is primarily controlled by the temperature in subtropical regions (alpha ocean), and by salinity in subpolar regions (beta ocean). Between these two regions lies a transition zone where intense frontal systems are usually found, either in the Southern Ocean or in the North Atlantic and North Pacific basins. Transition zones are often characterized by deep mixed layers in winter responsible for the ventilation of intermediate layers. Here we want to investigate what determines the latitudinal position of the transition zone. It is generally assumed that this position is set by the wind stress pattern forcing Ekman downwelling, however the position of the transition zone does not match so well the wind stress convergence zone in the observations. Another possibility would be that it is controlled by the distribution of air-sea fluxes. The equation of state (EOS) for seawater determines the relative impact of heat and freshwater forcing on the buoyancy forcing. A key property of seawater is that the density becomes less sensitive to temperature at low temperatures (caused by an important nonlinearity of the EOS), increasing the effect of salinity on the stratification in polar region. We hypothesize that the decreasing of the relative influence of temperature on density is a major component in setting the position of the transition zone. To test this hypothesis, we developed an idealized triple-gyre configuration with the ocean global circulation model NEMO (Nucleus for European Modelling of the Ocean). A range of simplified EOS have been ran to test the effect of the buoyancy forcing on the position of the transition zone and the convective area. Under restoring conditions for the temperature and the salinity, augmenting or reducing the sensitivity of the density to the temperature is used as a way to modify the relative contribution of temperature and salinity to the buoyancy forcing. We show that the position of the convective area corresponds to a surface density maximum and is not directly related to the Ekman pumping zone. Moreover, alpha - beta ocean distinction becomes possible because the EOS is nonlinear. The first order influence of the forcing evolution on setting the localization of the transition zone and the associated deep water formation challenges the classical theories of thermocline ventilation by Ekman pumping.</p>

Ocean Science ◽  
2016 ◽  
Vol 12 (5) ◽  
pp. 1049-1065 ◽  
Author(s):  
Luis Bravo ◽  
Marcel Ramos ◽  
Orlando Astudillo ◽  
Boris Dewitte ◽  
Katerina Goubanova

Abstract. Two physical mechanisms can contribute to coastal upwelling in eastern boundary current systems: offshore Ekman transport due to the predominant alongshore wind stress and Ekman pumping due to the cyclonic wind stress curl, mainly caused by the abrupt decrease in wind stress (drop-off) in a cross-shore band of 100 km. This wind drop-off is thought to be an ubiquitous feature in coastal upwelling systems and to regulate the relative contribution of both mechanisms. It has been poorly studied along the central-northern Chile region because of the lack in wind measurements along the shoreline and of the relatively low resolution of the available atmospheric reanalysis. Here, the seasonal variability in Ekman transport, Ekman pumping and their relative contribution to total upwelling along the central-northern Chile region (∼  30° S) is evaluated from a high-resolution atmospheric model simulation. As a first step, the simulation is validated from satellite observations, which indicates a realistic representation of the spatial and temporal variability of the wind along the coast by the model. The model outputs are then used to document the fine-scale structures in the wind stress and wind curl in relation to the topographic features along the coast (headlands and embayments). Both wind stress and wind curl had a clear seasonal variability with annual and semiannual components. Alongshore wind stress maximum peak occurred in spring, second increase was in fall and minimum in winter. When a threshold of −3  ×  10−5 s−1 for the across-shore gradient of alongshore wind was considered to define the region from which the winds decrease toward the coast, the wind drop-off length scale varied between 8 and 45 km. The relative contribution of the coastal divergence and Ekman pumping to the vertical transport along the coast, considering the estimated wind drop-off length, indicated meridional alternation between both mechanisms, modulated by orography and the intricate coastline. Roughly, coastal divergence predominated in areas with low orography and headlands. Ekman pumping was higher in regions with high orography and the presence of embayments along the coast. In the study region, the vertical transport induced by coastal divergence and Ekman pumping represented 60 and 40 % of the total upwelling transport, respectively. The potential role of Ekman pumping on the spatial structure of sea surface temperature is also discussed.


2014 ◽  
Vol 44 (12) ◽  
pp. 3033-3053 ◽  
Author(s):  
Jiayan Yang ◽  
Lawrence J. Pratt

Abstract The East Greenland Current (EGC) had long been considered the main pathway for the Denmark Strait overflow (DSO). Recent observations, however, indicate that the north Icelandic jet (NIJ), which flows westward along the north coast of Iceland, is a major separate pathway for the DSO. In this study a two-layer numerical model and complementary integral constraints are used to examine various pathways that lead to the DSO and to explore plausible mechanisms for the NIJ’s existence. In these simulations, a westward and NIJ-like current emerges as a robust feature and a main pathway for the Denmark Strait overflow. Its existence can be explained through circulation integrals around advantageous contours. One such constraint spells out the consequences of overflow water as a source of low potential vorticity. A stronger constraint can be added when the outflow occurs through two outlets: it takes the form of a circulation integral around the Iceland–Faroe Ridge. In either case, the direction of overall circulation about the contour can be deduced from the required frictional torques. Some effects of wind stress forcing are also examined. The overall positive curl of the wind forces cyclonic gyres in both layers, enhancing the East Greenland Current. The wind stress forcing weakens but does not eliminate the NIJ. It also modifies the sign of the deep circulation in various subbasins and alters the path by which overflow water is brought to the Faroe Bank Channel, all in ways that bring the idealized model more in line with observations. The sequence of numerical experiments separates the effects of wind and buoyancy forcing and shows how each is important.


Author(s):  
Jonathan A. Baker ◽  
Andrew J. Watson ◽  
Geoffrey K. Vallis

AbstractThe response of the meridional overturning circulation (MOC) to changes in Southern Ocean (SO) zonal wind forcing and Pacific basin vertical diffusivity is investigated under varying buoyancy forcings, corresponding to ‘warm’, ‘present-day’ and ‘cold’ states, in a two-basin general circulation model connected by a southern circumpolar channel. We find that the Atlantic MOC (AMOC) strengthens with increased SO wind stress or diffusivity in the model Pacific, under all buoyancy forcings. The sensitivity of the AMOC to wind stress increases as the buoyancy forcing is varied from a warm to a present-day or cold state, whereas it is most sensitive to the Pacific diffusivity in a present-day or warm state. Similarly, the AMOC is more sensitive to buoyancy forcing over the Southern Ocean under reduced wind stress or enhanced Pacific diffusivity. These results arise because of the increased importance of the Pacific pathway in the warmer climates, giving an increased linkage between the basins and so the opportunity for the diffusivity in the Pacific to affect the overturning in the Atlantic. In cooler states, such as in glacial climates, the two basins are largely decoupled and the wind strength over the SO is the primary determinant of the AMOC strength. Both wind- and diffusively-driven upwelling sustain the AMOC in the warmer (present-day) state. Changes in SO wind stress alone do not shoal the AMOC to resemble that observed at the last glacial maximum; changes in the buoyancy forcing are also needed to decouple the two basins.


2015 ◽  
Vol 12 (6) ◽  
pp. 3003-3041 ◽  
Author(s):  
L. Bravo ◽  
M. Ramos ◽  
O. Astudillo ◽  
B. Dewitte ◽  
K. Goubanova

Abstract. Two physical mechanisms can contribute to coastal upwelling, offshore Ekman transport and Ekman pumping due to the cyclonic wind stress curl, mainly caused by the abrupt decrease in wind stress (drop-off) in a cross-shore band of 100 km. This wind drop-off is thought to be an ubiquitous feature in coastal upwelling systems and to regulate the relative contribution of both mechanisms. It has been poorly studied along the central-northern Chile region because of the lack in wind measurements along the shoreline and of the relatively low-resolution of the available atmospheric Reanalysis. Here, the seasonal variability in Ekman transport, Ekman pumping and their relative contribution to total upwelling along the central-northern Chile region (~ 30° S) is evaluated from a high-resolution atmospheric model simulation. As a first step, the simulation is validated from satellite observations, which indicates a proper representation of the spatial and temporal variability of the wind along the coast by the model. The model outputs are then used to document the fine scale structures in the wind stress and wind curl in relation with the topographic features along the coast (headlands and embayments). Both wind stress and wind curl had a clear seasonal variability with a marked semiannual component. Alongshore wind stress maximum peak occurred in spring, second increase was in fall and minimum in winter. When a threshold of −3 x 10−5 s−1 for the across-shore wind curl was considered to define the region from which the winds decrease on-shoreward, the wind drop-off length scale varied between 8 and 45 km. The relative contribution of Ekman transport and Ekman pumping to the vertical transport along the coast, considering the estimated wind drop-off length, indicated meridional alternation between both mechanisms, modulated by orography and the intricate coastline. Roughly, coastal divergence predominated in areas with low orography and headlands. Ekman pumping was higher in regions with high orography and the presence of embayments along the coast. In the study region, the vertical transport induced by coastal divergence and Ekman pumping represented 60 and 40 % of the total upwelling transport, respectively. The potential role of Ekman pumping on the spatial structure of sea surface temperature is also discussed.


2009 ◽  
Vol 39 (9) ◽  
pp. 2024-2051 ◽  
Author(s):  
Ryo Furue ◽  
Julian P. McCreary ◽  
Zuojun Yu

Abstract The Tsuchiya jets (TJs) are narrow eastward currents located along thermal fronts at the poleward edges of thermostad water in the Pacific Ocean. In this study, an oceanic general circulation model (OGCM) is used to explore the dynamics of the northern TJ. Solutions are found in a rectangular basin, extending 100° zonally and from 40°S to 40°N. They are forced by three idealized forcings: several patches of idealized wind fields, including one that simulates the strong Ekman pumping region in the vicinity of the Costa Rica Dome (CRD); surface heating that warms the ocean in the tropics; and a prescribed interocean circulation (IOC) that enters the basin through the southern boundary and exits through the western boundary from 2° to 6°N (the model’s Indonesian passages). Solutions forced by all the aforementioned processes and with minimal diffusion resemble the observed flow field in the tropical North Pacific. A narrow eastward current, the model’s northern TJ, flows across the basin along the northern edge of a thick equatorial thermostad. Part of the TJ water upwells at the CRD upwelling region and the rest returns westward in the lower part of the North Equatorial Current. The deeper part of the TJ is supplied by water that leaves the western boundary current somewhat north of the equator. Its shallower part originates from water that diverges from the deep portion of the Equatorial Undercurrent (EUC); as a result, the TJ transport increases to the east and the TJ warms as it flows across the basin. These and other properties suggest that the dynamics of the model’s TJ are those of an arrested front, which in a 2½-layer model are generated when characteristics of the flow converge strongly or intersect. Eddy form stress, due to instability waves generated at the CRD region, extends the TJ circulation to deeper levels. When diffusivity is increased to commonly used values, the thermostad is less well defined and the TJ is weak. In a solution without the IOC, the TJ is shifted to higher temperatures with its water supplied by the subtropical cell. When horizontal viscosity is reduced, the TJ becomes narrower and is flanked by a westward current on its equatorward side.


2014 ◽  
Vol 11 (22) ◽  
pp. 6389-6400 ◽  
Author(s):  
S. T. Gille ◽  
M. M. Carranza ◽  
R. Cambra ◽  
R. Morrow

Abstract. In contrast to most of the Southern Ocean, the Kerguelen Plateau supports an unusually strong spring chlorophyll (Chl a) bloom, likely because the euphotic zone in the region is supplied with higher iron concentrations. This study uses satellite wind, sea surface temperature (SST), and ocean color data to explore the impact of wind-driven processes on upwelling of cold (presumably iron-rich) water to the euphotic zone. Results show that, in the Kerguelen region, cold SSTs correlate with high wind speeds, implying that wind-mixing leads to enhanced vertical mixing. Cold SSTs also correlate with negative wind-stress curl, implying that Ekman pumping can further enhance upwelling. In the moderate to high eddy kinetic energy (EKE) regions surrounding Kerguelen, we find evidence of coupling between winds and SST gradients associated with mesoscale eddies, which can locally modulate the wind-stress curl. This coupling introduces persistent wind-stress curl patterns and Ekman pumping around these long-lived eddies, which may modulate the evolution of Chl a in the downstream plume far offshore. Close to the plateau, this eddy coupling breaks down. Kerguelen has a significant wind shadow on its downwind side, which changes position depending on the prevailing wind and which generates a wind-stress curl dipole that shifts location depending on wind direction. This leads to locally enhanced Ekman pumping for a few hundred kilometers downstream from the Kerguelen Plateau; Chl a values tend to be more elevated in places where wind-stress curl induces Ekman upwelling than in locations of downwelling, although the estimated upwelling rates are too small for this relationship to derive from direct effects on upward iron supply, and thus other processes, which remain to be determined, must also be involved in the establishment of these correlations. During the October and November (2011) KErguelen Ocean and Plateau compared Study (KEOPS-2) field program, wind conditions were fairly typical for the region, with enhanced Ekman upwelling expected to the north of the Kerguelen Islands.


2020 ◽  
Author(s):  
Jake Casselman ◽  
Daniela Domeisen

<p>El Niño-Southern Oscillation (ENSO) influences the weather around the globe. These so-called ‘teleconnections’ occur on sub-seasonal-to-seasonal timescales, and can be useful for weather and climate predictions. ENSO teleconnections can reach as far as the North Atlantic-European (NAE) region, where ENSO influences remain insufficiently understood. ENSO teleconnections to the NAE region can travel through a range of different pathways, with differences in seasonality for each pathway. We here focus on determining the importance of the North Atlantic Oscillation (NAO) for establishing the connection between the tropical Pacific and the tropical Atlantic, following an ENSO event. We use reanalysis data in combination with a simplified atmospheric global circulation model with ENSO-like sea surface temperature (SST) forcing to investigate both the isolated and combined influences from these different pathways. Initial results suggest that the NAO’s influence onto the tropical Atlantic may play a minor role, as surface wind impacts are likely too far north to contribute to a wind-evaporation-SST (WES) feedback within the tropical Atlantic. Shifts in the longitudinal position of ENSO may, however, cause changes in the influence from the NAO onto the tropical Atlantic. Such changes may help in explaining the presence of significantly different spatial patterns of SST in the tropical Atlantic, following different ENSO flavors.</p>


Sign in / Sign up

Export Citation Format

Share Document