scholarly journals DNA bridges: A novel platform for single-molecule sequencing and other DNA-protein interaction applications

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260428
Author(s):  
Maurizio Righini ◽  
Justin Costa ◽  
Wei Zhou

DNA molecular combing is a technique that stretches thousands of long individual DNA molecules (up to 10 Mbp) into a parallel configuration on surface. It has previously been proposed to sequence these molecules by synthesis. However, this approach poses two critical challenges: 1-Combed DNA molecules are overstretched and therefore a nonoptimal substrate for polymerase extension. 2-The combing surface sterically impedes full enzymatic access to the DNA backbone. Here, we introduce a novel approach that attaches thousands of molecules to a removable surface, with a tunable stretching factor. Next, we dissolve portions of the surface, leaving the DNA molecules suspended as ‘bridges’. We demonstrate that the suspended molecules are enzymatically accessible, and we have used an enzyme to incorporate labeled nucleotides, as predicted by the specific molecular sequence. Our results suggest that this novel platform is a promising candidate to achieve high-throughput sequencing of Mbp-long molecules, which could have additional genomic applications, such as the study of other protein-DNA interactions.

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 491 ◽  
Author(s):  
Gurleen Kaur ◽  
Jacob Lewis ◽  
Antoine van Oijen

The ability to watch single molecules of DNA has revolutionised how we study biological transactions concerning nucleic acids. Many strategies have been developed to manipulate DNA molecules to investigate mechanical properties, dynamics and protein–DNA interactions. Imaging methods using small molecules and protein-based probes to visualise DNA have propelled our understanding of complex biochemical reactions involving DNA. This review focuses on summarising some of the methodological developments made to visualise individual DNA molecules and discusses how these probes have been used in single-molecule biophysical assays.


2020 ◽  
Author(s):  
Aurimas Kopūstas ◽  
Šarūnė Ivanovaitė ◽  
Tomas Rakickas ◽  
Ernesta Pocevičiūtė ◽  
Justė Paksaitė ◽  
...  

AbstractOver the past twenty years, single-molecule methods have become extremely important for biophysical studies. These methods, in combination with new nanotechnological platforms, can significantly facilitate experimental design and enable faster data acquisition. A nanotechnological platform, which utilizes flow-stretch of immobilized DNA molecules, called DNA Curtains, is one of the best examples of such combinations. Here, we employed new strategies to fabricate a flow-stretch assay of stably immobilized and oriented DNA molecules using protein template-directed assembly. In our assay a protein template patterned on a glass coverslip served for directional assembly of biotinylated DNA molecules. In these arrays, DNA molecules were oriented to one another and maintained extended either by single- or both-ends immobilization to the protein templates. For oriented both-end DNA immobilization we employed heterologous DNA labeling and protein template coverage with the anti-digoxigenin antibody. In contrast to the single-end, both-ends immobilization does not require constant buffer flow for keeping DNAs in an extended configuration, allowing us to study protein-DNA interactions at more controllable reaction conditions. Additionally, we increased immobilization stability of the biotinylated DNA molecules using protein templates fabricated from traptavidin. Finally, we demonstrated that double-tethered Soft DNA Curtains can be used in nucleic acid-interacting protein (e.g. CRISPR-Cas9) binding assay that monitors binding location and position of individual fluorescently labeled proteins on DNA.


2021 ◽  
Author(s):  
Sujay Ray ◽  
Nibedita Pal ◽  
Nils G Walter

Abstract Homologous recombination forms and resolves an entangled DNA Holliday Junction (HJ) crucial for achieving genetic reshuffling and genome repair. To maintain genomic integrity, specialized resolvase enzymes cleave the entangled DNA into two discrete DNA molecules. However, it is unclear how two similar stacking isomers are distinguished, and how a cognate sequence is found and recognized to achieve accurate recombination. We here use single-molecule fluorescence observation and cluster analysis to examine how prototypic bacterial resolvase RuvC singles out two of the four HJ strands and achieves sequence-specific cleavage. We find that RuvC first exploits, then constrains the dynamics of intrinsic HJ isomer exchange at a sampled branch position to direct cleavage toward the catalytically competent HJ conformation and sequence, thus controlling recombination output at minimal energetic cost. Our model of rapid DNA scanning followed by ‘snap-locking’ of a cognate sequence is strikingly consistent with the conformational proofreading of other DNA-modifying enzymes.


2015 ◽  
Vol 184 ◽  
pp. 263-274 ◽  
Author(s):  
T. A. Anikushina ◽  
M. G. Gladush ◽  
A. A. Gorshelev ◽  
A. V. Naumov

We suggest a novel approach for spatially resolved probing of local fluctuations of the refractive index n in solids by means of single-molecule (SM) spectroscopy. It is based on the dependence T1(n) of the effective radiative lifetime T1 of dye centres in solids on n due to the local-field effects. Detection of SM zero-phonon lines at low temperatures gives the values of the SM natural spectral linewidth (which is inversely proportional to T1) and makes it possible to reveal the distribution of the local n values in solids. Here we demonstrate this possibility on the example of amorphous polyethylene and polycrystalline naphthalene doped with terrylene. In particular, we show that the obtained distributions of lifetime limited spectral linewidths of terrylene molecules embedded into these matrices are due to the spatial fluctuations of the refractive index local values.


2009 ◽  
Vol 321 (7) ◽  
pp. 655-658
Author(s):  
Hirofumi Kurita ◽  
Hachiro Yasuda ◽  
Kazunori Takashima ◽  
Shinji Katsura ◽  
Akira Mizuno

2021 ◽  
Author(s):  
Brian P. Anton ◽  
Alexey Fomenkov ◽  
Victoria Wu ◽  
Richard J. Roberts

ABSTRACTSingle-molecule Real-Time (SMRT) sequencing can easily identify sites of N6-methyladenine and N4-methylcytosine within DNA sequences, but similar identification of 5-methylcytosine sites is not as straightforward. In prokaryotic DNA, methylation typically occurs within specific sequence contexts, or motifs, that are a property of the methyltransferases that “write” these epigenetic marks. We present here a straightforward, cost-effective alternative to both SMRT and bisulfite sequencing for the determination of prokaryotic 5-methylcytosine methylation motifs. The method, called MFRE-Seq, relies on excision and isolation of fully methylated fragments of predictable size using MspJI-Family Restriction Enzymes (MFREs), which depend on the presence of 5-methylcytosine for cleavage. We demonstrate that MFRE-Seq is compatible with both Illumina and Ion Torrent sequencing platforms and requires only a digestion step and simple column purification of size-selected digest fragments prior to standard library preparation procedures. We applied MFRE-Seq to numerous bacterial and archaeal genomic DNA preparations and successfully confirmed known motifs and identified novel ones. This method should be a useful complement to existing methodologies for studying prokaryotic methylomes and characterizing the contributing methyltransferases.


2021 ◽  
Author(s):  
Jiaqi Li ◽  
Lei Wei ◽  
Xianglin Zhang ◽  
Wei Zhang ◽  
Haochen Wang ◽  
...  

ABSTRACTDetecting cancer signals in cell-free DNA (cfDNA) high-throughput sequencing data is emerging as a novel non-invasive cancer detection method. Due to the high cost of sequencing, it is crucial to make robust and precise prediction with low-depth cfDNA sequencing data. Here we propose a novel approach named DISMIR, which can provide ultrasensitive and robust cancer detection by integrating DNA sequence and methylation information in plasma cfDNA whole genome bisulfite sequencing (WGBS) data. DISMIR introduces a new feature termed as “switching region” to define cancer-specific differentially methylated regions, which can enrich the cancer-related signal at read-resolution. DISMIR applies a deep learning model to predict the source of every single read based on its DNA sequence and methylation state, and then predicts the risk that the plasma donor is suffering from cancer. DISMIR exhibited high accuracy and robustness on hepatocellular carcinoma detection by plasma cfDNA WGBS data even at ultra-low sequencing depths. Analysis showed that DISMIR tends to be insensitive to alterations of single CpG sites’ methylation states, which suggests DISMIR could resist to technical noise of WGBS. All these results showed DISMIR with the potential to be a precise and robust method for low-cost early cancer detection.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0247541
Author(s):  
Brian P. Anton ◽  
Alexey Fomenkov ◽  
Victoria Wu ◽  
Richard J. Roberts

Single-molecule Real-Time (SMRT) sequencing can easily identify sites of N6-methyladenine and N4-methylcytosine within DNA sequences, but similar identification of 5-methylcytosine sites is not as straightforward. In prokaryotic DNA, methylation typically occurs within specific sequence contexts, or motifs, that are a property of the methyltransferases that “write” these epigenetic marks. We present here a straightforward, cost-effective alternative to both SMRT and bisulfite sequencing for the determination of prokaryotic 5-methylcytosine methylation motifs. The method, called MFRE-Seq, relies on excision and isolation of fully methylated fragments of predictable size using MspJI-Family Restriction Enzymes (MFREs), which depend on the presence of 5-methylcytosine for cleavage. We demonstrate that MFRE-Seq is compatible with both Illumina and Ion Torrent sequencing platforms and requires only a digestion step and simple column purification of size-selected digest fragments prior to standard library preparation procedures. We applied MFRE-Seq to numerous bacterial and archaeal genomic DNA preparations and successfully confirmed known motifs and identified novel ones. This method should be a useful complement to existing methodologies for studying prokaryotic methylomes and characterizing the contributing methyltransferases.


Author(s):  
Jane Oja ◽  
Sakeenah Adenan ◽  
Abdel-Fattah Talaat ◽  
Juha Alatalo

A broad diversity of microorganisms can be found in soil, where they are essential for nutrient cycling and energy transfer. Recent high-throughput sequencing methods have greatly advanced our knowledge about how soil, climate and vegetation variables structure the composition of microbial communities in many world regions. However, we are lacking information from several regions in the world, e.g. Middle-East. We have collected soil from 19 different habitat types for studying the diversity and composition of soil microbial communities (both fungi and bacteria) in Qatar and determining which edaphic parameters exert the strongest influences on these communities. Preliminary results indicate that in overall bacteria are more abundant in soil than fungi and few sites have notably higher abundance of these microbes. In addition, we have detected some soil patameters, which tend to have reduced the overall fungal abundance and enhanced the presence of arbuscular mycorrhizal fungi and N-fixing bacteria. More detailed information on the diversity and composition of soil microbial communities is expected from the high-throughput sequenced data.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Madeline M Keenen ◽  
David Brown ◽  
Lucy D Brennan ◽  
Roman Renger ◽  
Harrison Khoo ◽  
...  

In mammals, HP1-mediated heterochromatin forms positionally and mechanically stable genomic domains even though the component HP1 paralogs, HP1α, HP1β, and HP1γ, display rapid on-off dynamics. Here, we investigate whether phase-separation by HP1 proteins can explain these biological observations. Using bulk and single-molecule methods, we show that, within phase-separated HP1α-DNA condensates, HP1α acts as a dynamic liquid, while compacted DNA molecules are constrained in local territories. These condensates are resistant to large forces yet can be readily dissolved by HP1β. Finally, we find that differences in each HP1 paralog’s DNA compaction and phase-separation properties arise from their respective disordered regions. Our findings suggest a generalizable model for genome organization in which a pool of weakly bound proteins collectively capitalize on the polymer properties of DNA to produce self-organizing domains that are simultaneously resistant to large forces at the mesoscale and susceptible to competition at the molecular scale.


Sign in / Sign up

Export Citation Format

Share Document